Psicologia, Interamericana
Aprendizaje de reversión con y sin claves sociales humanas en perros domésticos: efectos del entrenamiento en detección de olores
Creative Commons
PDF

Palabras clave

aprendizaje de reversión; entrenamiento; perros de detección; claves sociales humanas.

Cómo citar

Carballo, F., Amezague, L., Marin, R., & Bentosela, M. (2022). Aprendizaje de reversión con y sin claves sociales humanas en perros domésticos: efectos del entrenamiento en detección de olores. Revista Interamericana De Psicología/Interamerican Journal of Psychology, 56(3), e1666. https://doi.org/10.30849/ripijp.v56i3.1666

Resumen

El aprendizaje de reversión requiere que los sujetos inhiban una respuesta preponderante a un estímulo previamente reforzado y que cambien su conducta hacia una nueva contingencia de estímulo-refuerzo. Este permite medir la flexibilidad y el control inhibitorio, habilidades cruciales para los perros altamente entrenados, como es el caso de los perros de detección de olores. El objetivo de este estudio fue determinar si el entrenamiento en tareas de detección modula el aprendizaje de reversión con y sin claves sociales humanas. Se comparó el desempeño de perros entrenados en detección con perros de familia no entrenados, en un paradigma de aprendizaje espacial, utilizando solo una discriminación de lugar (derecha-izquierda; tarea no social) y luego incorporando a la clave de lugar una clave social (posición del cuerpo del experimentador; tarea social). Los resultados muestran que no hubo diferencias entre grupos en ninguna de las dos tareas. Esto podría relacionarse con las características particulares de dicho entrenamiento. Asimismo, el desempeño fue mejor en la tarea social que en la no social durante la discriminación inicial, pero en la fase de reversión se observó el patrón inverso. Estas discrepancias pondrían en evidencia la importancia de la presencia de claves sociales humanas en los entrenamientos.  

https://doi.org/10.30849/ripijp.v56i3.1666
PDF

Citas

Anderson, B. A., Laurent, P. A., y Yantis, S. (2013). Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 7, 262. https://doi.org/10.3389/fnhum.2013.00262

Awh, E., Belopolsky, A. V., y Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443. https://doi.org/10.1016/j.tics.2012.06.010

Barrera, G., Alterisio, A., Scandurra, A., Bentosela, M., y D’Aniello, B. (2018). Training improves inhibitory control in water rescue dogs. Animal Cognition, 22(1), 127–131. https://doi.org/10.1007/s10071-018-1224-9

Barrera, G., Mustaca, A. y Bentosela, M. (2011). Gaze at the human face in shelter and pet dogs. Animal Cognition, 14, 727-734. https://doi.org/10.1007/s10071-011-0407-4

Barrera, G., Jakovcevic, A., Elgier, A. M., Mustaca, A., y Bentosela, M. (2010). Responses of shelter and pet dogs to an unknown human. Journal of Veterinary Behavior, 5(6), 339-344. https://doi.org/10.1016/j.jveb.2010.08.012

Blough, D. S. (2004). Reaction time signatures of discriminative processes: Differential effects of stimulus similarity and incentive. Animal Learning & Behavior, 32(2), 157-172. https://doi.org/10.3758/bf03196017

Bolló, H., Kiss, O., Kis, A., y Topál, J. (2021). The implicit reward value of the owner's face for dogs. iScience, 24(8), 102763. https://doi.org/10.1016/j.isci.2021.102763

Boutet I., Ryan M., Kulaga V., McShane C., Christie L., Freedman M. y Milgram N. W. (2005). Age-associated cognitive deficits in humans and dogs: A comparative neuropsychological approach. Progress in Neuro Psychopharmacology and Biological Psychiatry, 29 (3), 433-441. https://doi.org/10.1016/j.pnpbp.2004.12.015

Cavalli, C., Carballo, F., Dzik, V., Underwood, S. y Bentosela, M. (2018). Are Animal Assisted Activities dogs different from pet dogs? A comparison of their sociocognitive abilities. Journal of Veterinary Behavior. https://doi.org/10.1016/j.jveb.2017.12.001

Caycho T., Ventura-León J., Castillo-Blanco R. (2016). Magnitud del efecto para la diferencia de dos grupos en ciencias de la salud. Anales del Sistema Sanitario de Navarra, 39 (3), 459. https://doi.org/10.23938/ASSN.0242

Chase, H. W., Swainson, R., Durham, L., Benham, L., y Cools, R. (2011). Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning. Journal of Cognitive Neuroscience, 23, 936–946. https://doi.org/10.1162/jocn.2010.21456

Cook, P. F., Prichard, A., Spivak, M., y Berns, G. S. (2016). Awake canine fMRI predicts dogs’ preference for praise vs food. Social Cognitive and Affective Neuroscience, 11(12), 1853-1862. https://doi.org/10.1101/062703

Costa, V. D., Tran, V. L., Turchi, J. y Averbeck, B. B. (2015) Reversal learning and dopamine: a bayesian perspective. Journal of Neuroscience, 35, 2407-2416. https://doi.org/10.1523/JNEUROSCI.1989-14.2015

D’Angelo, L. (2021). Tamaño de efecto, potencia de la prueba, factor de Bayes y meta-análisis en el marco de la crisis de reproducibilidad de la ciencia. El caso de la diferencia de medias -con muestras independientes- (primera parte). Cuadernos del cimbage, 1 (23), 47-82. Recuperado a partir de https://ojs.econ.uba.ar/index.php/CIMBAGE/article/view/2055

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo C.W. (2020). InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Diverio, S., Menchetti, L., Riggio, G., Azzari, C., Iaboni, M., Zasso, R. Di Mari, W., y Santoro, M. M. (2017). Dogs’ coping styles and dog-handler relationships influence avalanche search team performance. Applied Animal Behaviour Science, 191, 67–77. https://doi.org/10.1016/j.applanim.2017.02.005

Elgier, A., Jakovcevic, A., Mustaca, A. y Bentosela, M. (2012). Pointing following in dogs: are simple or complex cognitive mechanisms involved? Animal Cognition. 15 (6), 1111-1119. https://doi.org/10.1007/s10071-012-0534-6

Evans, R. I., Herbold, J. R., Bradshaw, B. S., y Moore, G. E. (2007). Causes for discharge of military working dogs from service: 268 cases (2000–2004). Journal of the American Veterinary Medical Association, 231(8), 1215–1220. https://doi.org/10.2460/javma.231.8.1215

Fagnani, J., Barrera, G., Carballo, F., y Bentosela, M. (2016). Is previous experience important for inhibitory control? A comparison between shelter and pet dogs in A-not-B and cylinder tasks. Animal Cognition, 19(6), 1165–1172. https://doi.org/10.1007/s10071-016-1024-z

Fagnani, J., Bentosela, M., y Barrera, G. (2020a). Assessing dogs’ performance in a social and non-social reversal learning task. Journal of Dog Behavior, 6(2). https://doi.org/10.4454/db.v6i2.118

Gácsi, M., McGreevy, P., Kara, E., y Miklósi, Á. (2009). Effects of selection for cooperation and attention in dogs. Behavioral and Brain Functions, 5(1), 31. https://doi.org/10.1186/1744-9081-5-31

George, D. N. (2018). Stimulus similarity affects patterning discrimination learning. Journal of Experimental Psychology: Animal Learning and Cognition, 44(2), 128-148. https://doi.org/10.1037/xan0000164

Gergely, A., Compton, A. B., Newberry, R. C., y Miklósi, Á. (2016). Social Interaction with an “Unidentified Moving Object” Elicits A-Not-B Error in Domestic Dogs. PLOS ONE, 11(4), e0151600. https://doi.org/10.1371/journal.pone.0151600

Hall, N. J. (2017). Persistence and resistance to extinction in the domestic dog: Basic research and applications to canine training. Behavioural Processes, 141(1), 67-74. http://dx.doi.org/10.1016/j.beproc.2017.04.001

IBM Corp. (2015). IBM SPSS Statistics for Windows, Version 23.0. IBM Corp.

Izquierdo, A., Brigman, J. L., Radke, A. K., Rudebeck, P. H., y Holmes, A. (2017). The neural basis of reversal learning: An updated perspective. Neuroscience, 345, 12-26. https://doi.org/10.1016/j.neuroscience.2016.03.021

Izquierdo, A., y Jentsch, J. D. (2012). Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620. https://doi.org/10.1007/s00213-011-2579-7

Kelly, D. M., Adolphe, J. L., Vernouillet, A., McCausland, J. A., Rankovic, A., y Verbrugghe, A. (2019). Motoric self-regulation by sled dogs and pet dogs and the acute effect of carbohydrate source in sled dogs. Animal Cognition, 22(6), 931–946. https://doi.org/10.1007/s10071-019-01285-y

Kundey, S. M. A., De Los Reyes, A., Arbuthnot, J., Allen, R., Coshun, A., Molina, S., y Royer, E. (2010). Domesticated dogs’ (Canis familiaris) response to dishonest human points. International Journal of Comparative Psychology, 23(2), 201–215. https://doi.org/10.46867/ijcp.2010.23.02.02

Lazarowski, L., Strassberg, L. R., Waggoner, L. P., y Katz, J. S. (2019). Persistence and human-directed behavior in detection dogs: Ontogenetic development and relationships to working dog success. Applied Animal Behaviour Science, 220, 104860. https://doi.org/10.1016/j.applanim.2019.104860

Lazarowski, L., Thompkins, A., Krichbaum, S., Waggoner, L. P., Deshpande, G., y Katz, J. S. (2020). Comparing pet and detection dogs (Canis familiaris) on two aspects of social cognition. Learning & Behavior, 48(4), 432–443. https://doi.org/10.3758/s13420-020-00431-8

MacLean, E. L., y Hare, B. (2018). Enhanced Selection of Assistance and Explosive Detection Dogs Using Cognitive Measures. Frontiers in Veterinary Science, 5, 236. https://doi.org/10.3389/fvets.2018.00236

Milgram, N. W., Head, E., Weiner, E., y Thomas, E. (1994). Cognitive functions and aging in the dog: Acquisition of nonspatial visual tasks. Behavioral Neuroscience, 108(1), 57–68. https://doi.org/10.1037/0735-7044.108.1.57

Mongillo, P., Araujo, J. A., Pitteri, E., Carnier, P., Adamelli, S., Regolin, L., y Marinelli, L. (2013). Spatial reversal learning is impaired by age in pet dogs. AGE, 35(6), 2273–2282. https://doi.org/10.1007/s11357-013-9524-0

Mongillo, P., Scandurra, A., D’Aniello, B., y Marinelli, L. (2017). Effect of sex and gonadectomy on dogs’ spatial performance. Applied Animal Behaviour Science, 191, 84–89. https://doi.org/10.1016/j.applanim.2017.01.017

Oemisch, M., Watson, M. R., Womelsdorf, T. y Schubö, A. (2017) Changes of Attention during Value-Based Reversal Learning Are Tracked by N2pc and Feedback-Related Negativity. Frontiers in Human Neuroscience, 11, 540. https://doi.org/10.3389/fnhum.2017.00540

Pavlov, I. P. (1927). Conditioned reflexes. Oxford University Press.

Pearce, J. y Hall, G. (1980). A model for Pavlovian learning: variation in the effectiveness of conditioned but not unconditioned stimuli. Psychological Review, 87, 532-552. https://doi.org/10.1037/0033-295x.87.6.532

Piotti, P., Szabó, D., Bognár, Z., Egerer, A., Hulsbosch, P., Carson, R. S., y Kubinyi, E. (2018). Effect of age on discrimination learning, reversal learning, and cognitive bias in family dogs. Learning & Behavior, 46(4), 537–553. https://doi.org/10.3758/s13420-018-0357-7

Posner, M. y Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25-42. https://doi.org/10.1146/annurev.ne.13.030190.000325

Prato-Previde, E., Marshall-Pescini, S., y Valsecchi, P. (2007). Is your choice my choice? The owners’ effect on pet dogs’ (Canis lupus familiaris) performance in a food choice task. Animal Cognition, 11(1), 167–174. https://doi.org/10.1007/s10071-007-0102-7

Range, F., Heucke, S. L., Gruber, C., Konz, A., Huber, L., y Virányi, Z. (2009). The effect of ostensive cues on dogs’ performance in a manipulative social learning task. Applied Animal Behaviour Science, 120(3-4), 170-178. https://doi.org/10.1016/j.applanim.2009.05.012

Simon, A., Lazarowski, L., Singletary, M., Barrow, J., Van Arsdale, K., Angle, T., Waggoner, P., y Giles, K. (2020). A Review of the Types of Training Aids Used for Canine Detection Training. Frontiers in Veterinary Sciences, 7, 313. https://doi.org/10.3389/fvets.2020.00313

Szetei, V., Miklósi, Á., Topál, J., y Csányi, V. (2003). When dogs seem to lose their nose: an investigation on the use of visual and olfactory cues in communicative context between dog and owner. Applied Animal Behaviour Science, 83(2), 141–152. https://doi.org/10.1016/s0168-1591(03)00114-x

Tapp, P. D. (2003). Size and Reversal Learning in the Beagle Dog as a Measure of Executive Function and Inhibitory Control in Aging. Learning & Memory, 10(1), 64–73. https://doi.org/10.1101/lm.54403

Thorndike, E. L. (1898). Experiments with Dogs. In E. L. Thorndike (Ed.), Animal intelligence: An experimental study of the associative processes in animals (pp. 31–34). Columbia University Press. https://doi.org/10.1037/10780-004

Tiira, K., Tikkanen, A., y Vainio, O. (2020). Inhibitory control – Important trait for explosive detection performance in police dogs? Applied Animal Behaviour Science, 224, 104942. https://doi.org/10.1016/j.applanim.2020.104942

Topal, J., Gergely, G., Erdohegyi, A., Csibra, G., y Miklosi, A. (2009). Differential Sensitivity to Human Communication in Dogs, Wolves, and Human Infants. Science, 325(5945), 1269–1272. https://doi.org/10.1126/science.1176960

Troisi, C. A., Mills, D. S., Wilkinson, A., y Zulch, H. E. (2019). Behavioral and Cognitive Factors That Affect the Success of Scent Detection Dogs. Comparative Cognition & Behavior Reviews, 14, 51–76. https://doi.org/10.3819/ccbr.2019.140007

Udell, M. A. R. (2015). When dogs look back: inhibition of independent problem-solving behaviour in domestic dogs (Canis lupus familiaris) compared with wolves (Canis lupus). Biology Letters, 11(9), 20150489. https://doi.org/10.1098/rsbl.2015.0489

Van Bourg, J., Gunter, L. M., y Wynne, C. D. L. (2021). A rapid serial reversal learning assessment for age-related cognitive deficits in pet dogs. Behavioural Processes, 186, 104375. https://doi.org/10.1016/j.beproc.2021.104375

Voytko, M. L. (1999). Impairments in acquisition and reversals of two-choice discriminations by aged rhesus monkeys. Neurobiology of Aging, 20(6), 617–627. https://doi.org/10.1016/s0197-4580(99)00097-4

Wallis, L., Range, F., Müller, C. y Virányi, Z. (2011). Reversal learning in a social communication task: is there an effect of cue? Journal of Veterinary Behavior. http://dx.doi.org/10.1016/j.jveb.2010.09.0017

Wilsson, E., y Sundgren, P. E. (1997). The use of a behaviour test for the selection of dogs for service and breeding, I: Method of testing and evaluating test results in the adult dog, demands on different kinds of service dogs, sex and breed differences. Applied Animal Behaviour Science, 53(4), 279–295. https://doi.org/10.1016/s0168-1591(96)01174-4

Wobber, V., y Hare, B. (2009). Testing the social dog hypothesis: Are dogs also more skilled than chimpanzees in non-communicative social tasks? Behavioural Processes, 81(3), 423–428. https://doi.org/10.1016/j.beproc.2009.04.003

Wright, H. F., Mills, D. S., y Pollux, P. M. (2011). Development and validation of a psychometric tool for assessing impulsivity in the domestic dog (Canis familiaris). International Journal of Comparative Psychology, 24 (2), 210–225. https://doi.org/10.46867/ijcp.2011.24.02.03

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Fabricio Carballo, Luciana Amezague, Raúl Marin, Mariana Bentosela