Psicologia, Interamericana
Trastornos de sueño y conductuales provocados por la epilepsia: Efecto protector de la Gabapentina
ab
PDF

Palabras clave

epilepsia, vigilia, sueño, gabapentina, conducta animal, acción farmacológica

Cómo citar

Ayala Guerrero, F., Mexicano Medina, G., Guerrero, A., Gutiérrez Chávez, C. A., Lazo Sánchez, L. A., & Mateos Salgado, E. L. (2022). Trastornos de sueño y conductuales provocados por la epilepsia: Efecto protector de la Gabapentina. Revista Interamericana De Psicología/Interamerican Journal of Psychology, 56(2), e1458. https://doi.org/10.30849/ripijp.v56i2.1458

Resumen

Se han descrito numerosas alteraciones del sueño inducidas por la epilepsia nocturna. La gabapentina (GBP), es utilizado como adyuvante o como tratamiento monoterapéutico ya que induce una mejoría significativa en pacientes con convulsiones focales parciales o secundariamente generalizadas. En modelos animales experimentales de epilepsia con pentilenetetrazol (PTZ), la GBP protege contra las convulsiones generadas. El objetivo de este trabajo fue investigar su eficacia para proteger contra las alteraciones motoras y del sueño provocadas por crisis convulsivas. Se realizaron estudios poligráficos en ratas wistar macho, separadas en 4 grupos. Tras la administración de solución salina, se realizó un registro control en cada grupo. Posteriormente, un grupo recibió 50 mg/kg de PTZ, mientras que los otros tres grupos recibieron 15, 30 o 60 mg/kg de GBP, 30 minutos antes de la administración de PTZ. Después de la administración de PTZ, se observaron las manifestaciones electrofisiológicas y conductuales que caracterizan a las crisis convulsivas. Además, los estados de vigilancia se alteraron significativamente, incrementándose la cantidad de vigilia, mientras que el sueño se inhibió durante un período de tiempo. La administración de dosis crecientes de GBP, tendió a inhibir la presencia de conductas motoras anormales, facilitando la presencia de sueño

https://doi.org/10.30849/ripijp.v56i2.1458
PDF

Citas

Avila-Luna, A., Bueno-Nava, A., Cortes-Altamirano, J. L., Reyes-Long, S., Bandala, C., & Alfaro-Rodríguez, A. (2019). Effect of postictal process in motor deficit and monoaminergic concentration in hippocampus, cerebellum, and cortex. Salud Mental, 42(5), 251-256. https://doi.org/10.17711/sm.0185-3325.2019.032

Akula, K. K, Dhir, A., & Kulkarni, S. K. (2009). Effect of various antiepileptic drugs in a pentylenetetrazol‐induced seizure model in mice. Methods and Findings in Experimental and Clinical Pharmacology, 31(7), 423-432. https://doi.org/10.1358/mf.2009.31.7.1393610

Ayala-Guerrero, F. (2011). Effect of gabapentin on sleep patterns in a patient with nocturnal epilepsy. Sleep Medicine, 12(1), S1–S130.

Ayala-Guerrero, F., Alfaro-Rodríguez, A., Martínez, C., Campos-Sepúlveda, E., Vargas, L., & Mexicano, G. (2002). Effect of kainic acid-induced seizures on sleep patterns. Proceedings of the Western Pharmacology Society, 45, 178-180.

Ayala-Guerrero, F., & Mexicano, G. (2017). Effect of Generalized Seizures on Sleep Patterns [An Animal Model]. SciTz Neurology and Neurosciences, 2(1), 1005.

Ayala-Guerrero, F., Mexicano, G., Gutiérrez-Chávez, C.A., Lazo, L.A., & Mateos, E.L. (2019). Effect of gabapentin on sleep patterns disturbed by epilepsy. Epilepsy & Behavior, 92, 290-296. https://doi.org/10.1016/j.yebeh.2018.12.012

Ayala-Guerrero, F., Mexicano, G., & Reyes, A. (2010). Organización del sueño. En F. Ayala-Guerrero, F., & G. Mexicano (Eds), Efecto del dolor sobre el sueño (pp. 1-26). Mente Abierta.

Barreto, S. J. R., Fernandes, F. R. M., & Sakamoto, A. C. (2002). Correlation of sleep macrostructure parameters and idiopathic epilepsies. Arquivos de neuro-psiquiatra, 60(2-B), 353, 357. https://doi.org/10.1590/S0004-282X2002000300002

Carreño, M., & Fernández, S. (2016). Sleep-related epilepsy. Current Treatment Options in Neurology, 18, 23. https://dx.doi.org/10.1007/s11940-016-0402-9

Cope, D. W., Di Giovanni, G., Fyson, S. J., Orbán, G., Errington, A. C, Lorincz, M. L., … Crunelli, V. (2009). Enhanced tonic GABAA inhibition in typical absence epilepsy. Nature Medicine, 15(12), 1392–1398. https://doi.org/10.1038/nm.2058

Corda, M. G., Giorgi, O., Longoni, B., Orlandi, M., & Biggio, G. (1990). Decrease in the function of the gamma-aminobutyric acid-coupled chloride channel produced by the repeated administration of pentylenetetrazol to rats. Journal of Neurochemistry, 55(4), 1216-1221. https://doi.org/10.1111/j.1471-4159.1990.tb03127.x

Czuczwar, S. J., & Patsalos, P. N. (2001). The new generation of GABA enhancers. Potencial in the treatment of epilepsy. CNS Drugs, 15(5), 339-350. https://doi.org/10.2165/00023210-200115050-00001

Dalby, N. O., & Nielsen, E. B. (1997). Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Research, 28(1), 63-72. https://doi.org/10.1016/S0920-1211(97)00031-4

Deboer, T. (2015). Behavioral and electrophysiological correlates of sleep and sleep homeostasis. In P. Meerlo, R. Benca & T. Abel (Eds), Current Topics in behavioral neurosciences (pp. 1-24). Springer-Verlag Berlin Heidelberg.

Faingold, C. L. (1987). The role of the brain stem in generalized epileptic seizures. Metabolic Brain Disease, 2(2), 81-112. https://doi.org/10.1007/bf00999720

Foldvary‐Schaefer, N., De Leon Sanchez, I., Karafa, M., Mascha, E., Dinner, D., & Morris, H. H. (2002). Gabapentin increases slow wave sleep in normal adults. Epilepsia, 43(12), 1493-1497. https://doi.org/10.1046/j.1528-1157.2002.21002.x

Foldvary-Schaefer, N., & Grigg-Damberger, M. (2006). Sleep and epilepsy: what we know, don’t know, and need to know. Journal of Clinical Neurophysiology, 23(1), 4-20. https://doi.org/10.1097/01.wnp.0000206877.90232.cb

Franco-Pérez, J., Ballesteros-Zebadúa, P., & Manjarrez-Marmolejo, J. (2015). Unilateral microinjection of carbenoxolone into the pontis caudalis nucleus inhibits the pentylenetetrazole-induced epileptiform activity in rats. Neuroscience Letters, 602, 38-43. https://doi.org/10.1016/j.neulet.2015.06.037

Halász, P. (2013). How Sleep Activates Epileptic Networks? Epilepsy Research and Treatment, 2013, 425697. https://doi.org/10.1155/2013/425697

Hansen, S. L., Sperling, B. B., & Sánchez, C. (2004). Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28(1), 105-113. https://doi.org/10.1016/j.pnpbp.2003.09.026

Hantraye, P., Brouillet, E., Gulbert, B., Chavoix, C., Fukuda, H., Prenant, C., … Maziere, M. (1987). Pentylenetetrazol-induced seizure is not mediated by benzodiazepine receptors in vivo. Neuropharmacology, 26(10), 1509-1512. https://doi.org/10.1016/0028-3908(87)90171-7

Huang, R. Q., Bell-Horner, C. L., Dibas, M. I., Covey, D. F., Drewe, J. A., & Dillon, G. H. (2001) Pentylenetetrazol-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. The Journal of Pharmacology and Experimental Therapeutics, 298(3), 986–995.

Klioueva, I. A., van Luijtelaar, E. L. J. M., Chepurnova, N. E., & Chepurnov, S. A. (2001). PTZ-induced seizures in rats: effects of age and strain. Physiology & Behavior, 72(3), 421-426. https://doi.org/10.1016/S0031-9384(00)00425-X

Korpi, E. R., Grunder, G., & Lüddens, H. (2002). Drug interactions at GABAA receptors. Progress in Neurobiology, 67(2),113-159. https://doi.org/10.1016/s0301-0082(02)00013-8

Kryger, M. H., Roth, T., & Dement, W. C. (2017). Principles and practice of sleep medicine. Elsevier.

Larsen Burns, .M, Kinge, E., Stokke Opdal, M., Johannessen, S. I., & Johannessen Landmark, C. (2019). Therapeutic drug monitoring of gabapentin in various indications. Acta Neurologica Scandinavica, 139(5), 446-454. https://doi.org/10.1111/ane.13075

Lo, H. S., Yang, C. M., Helen, G., Lo, H. G., Lee, C. Y., Ting, H., … Tzang, B. S. (2010). Treatment effects of gabapentin for primary insomnia. Clinical Neuropharmacology, 33(2), 84-90. http://dx.doi.org/10.1097/WNF.0b013e3181cda242

MacDonald, R. L., & Barker, J. L. (1977). Pentylenetetrazol and penicilin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurons. Nature, 267(5613), 720-721. https://doi.org/10.1038/267720a0

Malow, B. A. (2007). The interaction between sleep and epilepsy. Epilepsia, 48(S9), 36-38. https://doi.org/10.1111/j.1528-1167.2007.01400.x

Malow, B. A., Kushwaha, R., Lin, X., Morton, K. J., & Aldrich, M. S. (1997). Relationship of interictal epileptiform discharges to sleep depth in partial epilepsy. Electroencephalography and Clinical Neurophysiology, 102(1), 20-26. https://doi.org/10.1016/S0013-4694(96)96028-9

Manni, R., & Terzaghi, M. (2010). Comorbidity between epilepsy and sleep disorders. Epilepsy Research, 90(3), 171-177. https://doi.org/10.1016/j.eplepsyres.2010.05.006

Manjarrez, J., Alvarado, R., & Camacho-Arroyo, I. (2001). Differential effects of NMDA antagonists microinjections into the nucleus reticularis pontis caudalis on seizures induced by pentylenetetrazol in the rat. Epilepsy Research, 46(1), 39-44. https://doi.org/10.1016/S0920-1211(01)00256-X

Merrill, M. A., Clough, R. W., Jobe, P. C., & Browning, R. A. (2005). Brainstem seizure severity regulates forebrain seizure expression in the audiogenic kindling model. Epilepsia, 46(9), 1380-1388. https://doi.org/10.1111/j.1528-1167.2005.39404.x

Mexicano, G., Campos-Sepulveda, E., Ayala-Guerrero, F., & Vargas, L. (2005, marzo). Alteraciones del sueño provocadas por las crisis convulsivas inducidas con metrazol. Cartel presentado en el XXVIII Congreso Nacional de Farmacología. Universidad de las Américas, Puebla, México.

Minecan, D., Natarajan, A., Marzec, M., & Malow, B. (2002). Relationship of epileptic seizures to sleep stage and sleep depth. Sleep, 25(8), 899-904.

Nehlig, A., Rudolf, G., Leroy, C., Rigoulot, M. A., Simpson, I. A., & Vannucci, S. J. (2006). Pentylenetetrazol induced status epilepticus up-regulates the expression of glucose transporter mRNAs but not proteins in the immature rat brain. Brain Research, 1082(1), 32-42. https://doi.org/10.1016/j.brainres.2006.01.078

Offord, J., & Isom, L. L. (2016). Drugging the undruggable: gabapentin, pregabalin and the calcium channel α2δ subunit. Critical Reviews in Biochemistry and Molecular Biology, 51(4): 246-256. http://dx.doi.org/10.3109/10409238.2016.1173010

Pellmar, T. C., & Wilson, W. A. (1977). Synaptic mechanism of pentylenetetrazole: selectivity for chloride conductance. Science, 197(4306), 912-914. https://doi.org/10.1126/science.887932

Racine, R. J. (1972). Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalography and Clinical Neurophysiology, 32(3), 281-294. https://doi.org/10.1016/0013-4694(72)90177-0

Raisinghani, M., & Faingold, C.L. (2005). Pontine reticular formation neurons are implicated in the neuronal network for generalized clonic seizures which is intensified by audiogenic kindling. Brain Research, 1064(1-2), 90-97. https://doi.org/10.1016/j.brainres.2005.09.047

Robinson, A. A., & Malow, B. A. (2013). Gabapentin shows promise in treating refractory insomnia in children. Journal of Child Neurology, 28(12), 1618-21. https://doi.org/10.1177/0883073812463069

Rose, M. A., & Kam, P. C. (2002). Gabapentin: pharmacology and its use in pain management. Anaesthesia, 57(5), 451-62. https://doi.org/10.1046/j.0003-2409.2001.02399.x

Sajadian, A., Esteghamat, S., Karimzadeh, F., Eshaghabadi, A., Sieg, F., Speckmann, E. J., ... Gorji, A. (2015). Anticonvulsant effect of neural regeneration peptide 2945 on pentylenetetrazol-induced seizures in rats. Neuropeptides, 49, 15–23. https://doi.org/10.1016/j.npep.2014.11.002

Santín, J. (2013). Sueño y epilepsia. Revista Médica Clínica Las Condes, 24(3), 480-485. http://dx.doi.org/10.1016/s0716-8640(13)70184-6

Sayyah, M., Beheshti, S., Shokrgoza, M. A., Eslami-far, A., Deljoo, Z., Khabiri, A. R., … Haeri Rohani, A. (2005). Antiepileptogenic and anticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Experimental Neurology, 191(1), 145-53. https://doi.org/10.1016/j.expneurol.2004.08.032

Sills, G. J. (2006). The mechanisms of action of gabapentin and pregabalin. Current Opinion in Pharmacology, 6(1), 108–113. https://doi.org/10.1016/j.coph.2005.11.003

Schweitzer, P. K., & Feren, S. D. (2017) Pharmacological Treatment of Insomnia. In: H. Attarian (ed.), Clinical Handbook of Insomnia (pp. 97-132). Springer.

Swift, K., Keus, K., Gonzalez, C., Cabrera, Y., Jimenez, J., Holloway, J., Clawson, B., & Poe, G. (2020). Sex differences within sleep in gonadally intact rats. Sleep, 43 (5), 1-14. https://doi.org/10.1093/sleep/zsz289

Targas, E., Contreras, G., & Ríos, L. (2014). Tratamiento Farmacológico de las epilepsias. Leitura Médica Ltda.

Thijs, R. D., Surges, R., O´Brien, T. J., & Sander, J. W. (2019). Epilepsy in adults. Lancet, 393(10172), 689-701. https://doi.org/10.1016/s0140-6736(18)32596-0

Valdizán, J. R., Almárcegui-Lafita, C., Brualla, J., Alejos-Herrera, M. V., Chulilla, J. L., & Dolz-Zaera, I. (1999). Influencia de la gabapentina sobre el sueño infantil en epilepsia parcial secundariamente generalizada. Revista de Neurología, 29(8), 718-721. https://doi.org/10.33588/rn.2908.99210

Wang, Y., & Qin, Z. H. (2010). Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis, 15(11),1382-402. https://doi.org/10.1007/s10495-010-0481-0

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Fructuoso Ayala Guerrero, Graciela Mexicano Medina, Angel Guerrero, Carlos Alberto Gutiérrez Chávez, Legna Alejandra Lazo Sánchez, Erik Leonardo Mateos Salgado