Abstract
The increase of inequalities and the learning crisis due to COVID-19 pandemic has forced to review the role of education in the attainment of skills to learn throughout life. The purpose of this study is to investigate the incidence of the academic achievement on selfregulation strategies (forethought, inhibition and volitional inhibition), considering the socioeconomical context at the end of elementary school. The SRL strategies are assessed, from the perspective of students and teachers, triangulating measurement in different tasks. 67 students in their last year of primary education participated. The SRL measures were compared using robust tests considering high and low academic achievement and low and medium socioeconomic context (robust version of Welch’s test for two groups, Yuen’s test, and two-way ANOVA based on trimmed means and Winsorized variances). The academic achievement affects and significantly predicts the forethought strategy. In the low socioeconomical context, the students with a high academic achievement maximize their SRL. The modulating role of the school experience in self-regulation is discussed.
References
Abad, J.F., Olea, J., Ponsoda, V., & García, C. (2012). Mediciones en Ciencias Sociales y de la Salud. Madrid: Síntesis.
Báez, M., & Alonso-Tapia, J. (2017). Entrenamiento en estrategias de autorregulación de la motivación y la volición: efecto en el aprendizaje. Anales de Psicología, 33(2), 292–300. https://doi.org/10.6018/analesps.33.2.229771
Barg, G., Daleiro, M., Queirolo, E. I., Ravenscroft, J., Mañay, N., Peregalli, F., & Kordas, K. (2018). Association of low lead levels with behavioral problems and executive function deficits in schoolers from Montevideo, Uruguay. International Journal of Environmental Research and Public Health, 15(2735). https://doi.org/10.3390/ijerph15122735
Ben-Eliyahu, A. (2019). Academic Emotional Learning: A Critical Component of Self-Regulated Learning in the Emotional Learning Cycle. Educational Psychologist, 0(0), 1–22. https://doi.org/10.1080/00461520.2019.1582345
Boekaerts, M., & Corno, L. (2005). Self-Regulation in the Classroom: A Perspective on Assessment and Intervention. Applied Psychology, 54(2), 199–231. https://doi.org/10.1111/j.1464-0597.2005.00205.x
Callan, G. L., & Cleary, T. J. (2018). Multidimensional Assessment of Self-Regulated Learning With Middle School Math Students. School Psychology Quarterly, 33(1), 103–111. https://doi.org/10.1037/spq0000198
Calvo, J. J. (Ed.). (2013). Atlas sociodemográfico y de desigualdad del Uruguay. Fascículo 1. Las necesidades básicas insatisfechas a partir de los Censos 2011. Montevideo: Ediciones Trilce.
Chen, P. P., & Bonner, S. M. (2017). Teachers’ Beliefs About Grading Practices and a Constructivist Approach to Teaching. Educational Assessment, 22(1), 18–34. https://doi.org/10.1080/10627197.2016.1271703
Comisión Económica para América Latina y el Caribe (CEPAL). (2019). Panorama social de América Latina, 2018. Panorama social de América Latina, 2018. Santiago de Chile. https://doi.org/10.2307/j.ctv550d07.6
Corno, L. (2001). Volitional aspects of self-regulated learning. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theoretical perspectives (2nd ed.). London: Lawrence Erlbaum Associates.
Daily, S. M., Mann, M. J., Kristjansson, A. L., Smith, M. L., & Zullig, K. J. (2019). School Climate and Academic Achievement in Middle and High School Students. Journal of School Health, 89(3), 173–180. https://doi.org/10.1111/josh.12726
Dent, A. L., & Hoyle, R. H. (2015). A framework for evaluating and enhancing alignment in self-regulated learning research. Metacognition and Learning, 10(1), 165–179. https://doi.org/10.1007/s11409-015-9136-4
Dent, A. L., & Koenka, A. C. (2016). The Relation Between Self-Regulated Learning and Academic Achievement Across Childhood and Adolescence: A Meta-Analysis. Educational Psychology Review, 28(3), 425–474. https://doi.org/10.1007/s10648-015-9320-8
Dietrichson, J., Bøg, M., Filges, T., & Klint Jørgensen, A.-M. (2017). Academic Interventions for Elementary and Middle School Students With Low Socioeconomic Status. Review of Educational Research, 87(2), 243–282. https://doi.org/10.3102/0034654316687036
DiFrancesca, D., Nietfeld, J. L., & Cao, L. (2015). A comparison of high and low achieving students on self-regulated learning variables. Learning and Individual Differences, (January 2016). https://doi.org/10.1016/j.lindif.2015.11.010
Dörrenbächer, L., & Perels, F. (2015). Volition completes the puzzle: Development and evaluation of an integrative trait model of self-regulated learning. Frontline Learning Research, 3(4), 14–36. https://doi.org/10.14786/flr.v3i4.179
Engle, P., & Black, M. (2008). The Effect of Poverty on Child Development and Educational Outcomes. Annals of the New York Academy of Sciences, 1136, 243–256. https://doi.org/doi:10.1196/annals.1425.023
Epskamp, S. (2019). semPlot: Path Diagrams and Visual Analysis of Various SEM Packages' Output. R package version 1.1.2. https://CRAN.R-project.org/package=semPlot
Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: an easy way to maximize the accuracy and power of your research. American Psychologist, 63(7), 591. https://psycnet.apa.org/doi/10.1037/0003-066X.63.7.591
Evans, D., Borriello, G. A., & Field, A. P. (2018). A review of the academic and psychological impact of the transition to secondary education. Frontiers in Psychology, 9(AUG), 1–18. https://doi.org/10.3389/fpsyg.2018.01482
Evans, G. W., & Kim, P. (2013). Childhood Poverty, Chronic Stress, Self-Regulation, and Coping. Child Development Perspectives, 7(1), 43–48. https://doi.org/10.1111/cdep.12013
Evans, G. W., & Rosenbaum, J. (2008). Self-regulation and the income-achievement gap. Early Childhood Research Quarterly, 23(4), 504–514. https://doi.org/10.1016/j.ecresq.2008.07.002
Field, A. P., & Wilcox, R. R. (2017). Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19–38. https://doi.org/10.1016/j.brat.2017.05.013
Gaeta, M. L., Teruel, M. P., & Orejudo, S. (2012). Aspectos motivacionales, volitivos y metacognitivos del aprendizaje autorregulado. Electronic Journal of Research in Educational Psychology, 10(26), 73–94. http://dx.doi.org/10.25115/ejrep.v10i26.1485
García Fernández, T., González-Pienda, J. A., Rodríguez Pérez, C., Álvarez García, D., & Álvarez Pérez, L. (2014). Psychometric characteristics of the BRIEF scale for the assessment of executive functions in Spanish clinical population. Psicothema, 26(1), 47–52. https://doi.org/10.7334/psicothema2013.149
Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). Behavior Rating Inventory of Executive Function. Child Neuropsychology, 6(3), 235–238. https://doi.org/10.1076/chin.6.3.235.3152
Greene, J. A. (2018). Self-regulation in education. New York: Routledge.
Greene, J. A., Bolick, C. M., Jackson, W. P., Caprino, A. M., Oswald, C., & McVea, M. (2015). Domain-specificity of self-regulated learning processing in science and history. Contemporary Educational Psychology, 42, 111–128. https://doi.org/10.1016/j.cedpsych.2015.06.001
Gross, J. & Ligges, U. (2015). nortest: Tests for Normality. R package version 1.0-4. https://CRAN.R-project.org/package=nortest
Hackman, D. A., Gallop, R., Evans, G. W., & Farah, M. J. (2015). Socioeconomic status and executive function: developmental trajectories and mediation. Developmental Sciencia, 1–17. https://doi.org/10.1111/desc.12246
Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of Child Poverty, Brain Development, and Academic Achievement. JAMA Pediatrics, 53706, 1–8. https://doi.org/10.1001/jamapediatrics.2015.1475
Harding, S.-M., English, N., Nibali, N., Griffin, P., Graham, L., Alom, B., & Zhang, Z. (2019). Self-regulated learning as a predictor of mathematics and reading performance: A picture of students in grades 5 to 8. Australian Journal of Education, 000494411983015. https://doi.org/10.1177/0004944119830153
Heirweg, S., De Smul, M., Merchie, E., Devos, G., & Van Keer, H. (2020). Mine the process: Investigating the cyclical nature of upper primary school students’ self-regulated learning. Instructional Science. https://doi.org/10.1007/s11251-020-09519-0
Heirweg, S., De Smul, M., Devos, G., & Van Keer, H. (2019). Profiling upper primary school students’ self-regulated learning through self-report questionnaires and think-aloud protocol analysis. Learning and Individual Differences, 70, 155–168. https://doi.org/10.1016/j.lindif.2019.02.001
INEEd. (2019). Informe sobre el estado de la educación en Uruguay. Montevideo: INEEd.
Karlen, Y. (2016). Differences in students’ metacognitive strategy knowledge, motivation, and strategy use: A typology of self-regulated learners. Journal of Educational Research, 109(3), 253–265. https://doi.org/10.1080/00220671.2014.942895
Kazen, M., Kaschel, R., & Kuhl, J. (2008). Individual differences in intention initiation under demanding conditions: Interactive effects of state vs. action orientation and enactment difficulty. Journal of Research in Personality, 42(3), 693–715. https://doi.org/10.1016/j.jrp.2007.09.005
Kim, K. R., & Seo, E. H. (2015). The relationship between procrastination and academic performance: A meta-analysis. Personality and Individual Differences, 82, 26–33. https://doi.org/10.1016/j.paid.2015.02.038
Koole, S. L., & Aldao, A. (2015). The Self-Regulation of Emotion: Theoretical and Empirical Advances. In K. D. Vohs & R. F. Baumeister (Eds.), Handbook of Self-Regulation (3rd ed., pp. 1–36). New York: Guildford Press.
Kostons, D., Van Gog, T., & Paas, F. (2009). How Do I Do? Investigating Effects of Expertise and Performance-Process Records on Self-Assessment. Applied Cognitive Psychology, 23(December 2008), 1256–1265. https://doi.org/10.1002/acp
Kuhl, J., Baumann, N., & Kazén, M. (2007). What goals make a good grades- and why? Academic Exchange Quarterly: Self-Regulation of Learning, 11(4), 192–196.
Kuhl, J., Kazén, M., & Quirin, M. (2014). La Teoría de la Interacción de Sistemas de la Personalidad (PSI). Revista Mexicana de Psicología, 31(2), 90–99.
LLECE-UNESCO. (2015). Informe de resultados TERCE. Factores asociados. Santiago de Chile: UNESCO.
Maechler M, Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke T, Koller M, Conceicao EL, Anna di Palma M (2020). robustbase: Basic Robust Statistics. R package version 0.93-6, http://robustbase.r-forge.r-project.org/.
Mair, P., & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. Behavior research methods, 52, 464-488.
Marks, G. N. (2016). The relative effects of socio-economic, demographic, non-cognitive and cognitive influences on student achievement in Australia. Learning and Individual Differences, 49, 1–10. https://doi.org/10.1016/j.lindif.2016.05.012
ONU. (2020). Geopolítica de la pandemia de COVID-19. Geopolítica(S), 11, pp. 11–13. https://doi.org/10.5209/GEOP.69137
Panadero, E. (2017). A Review of Self-regulated Learning: Six Models and Four Directions for Research. Frontiers in Psychology, 8(April), 1–28. https://doi.org/10.3389/fpsyg.2017.00422
Pearce, A., Sawyer, A. C. P., Chittleborough, C. R., Mittinity, M. N., Law, C., & Lynch, J. (2016). Do early life cognitive ability and self-regulation skills explain socio-economic inequalities in academic achievement? An effect decomposition analysis in UK and Australian cohorts. Social Science & Medicine, 165, 108–118. https://doi.org/10.1016/j.socscimed.2016.07.016
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9
Pintrich, P. R., & Zusho, A. (2007). Student motivation and self-regulated learning in the college classroom. In R. P. Perry & J. C. Smart (Eds.), The scholarship of teaching and learning in higher education: An evidence-based practice (pp. 731–810). Springer US. https://doi.org/10.1007/1-4020-5742-3_16
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Revelle W (2020). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 2.0.9, https://CRAN.R-project.org/package=psych.
Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135–147. https://doi.org/10.1016/j.edurev.2010.12.001
Rodríguez-Pereiro, S., Regueiro, B., Rodríguez, S., Piñeiro, I., Estévez, I., & Valle, A. (2019). Rendimiento previo e implicación en los deberes escolares de los estudiantes de los últimos cursos de educación primaria. Psicología Educativa, 25(2), 109–116. https://doi.org/10.5093/psed2019a2
Rovers, S. F. E., Clarebout, G., Savelberg, H. H. C. M., de Bruin, A. B. H., & van Merriënboer, J. J. G. (2019). Granularity matters: comparing different ways of measuring self-regulated learning. Metacognition and Learning, (February). https://doi.org/10.1007/s11409-019-09188-6
Segretin, M. S., Hermida, M. J., Prats, L., Fracchia, C., Ruetti, E., & Lipina, S. J. (2016). Childhood poverty and congnitive development in Latin America in the 21st century. In D. D. Preiss (Ed.), Child and adolescent development in Latin America. New Directions for Child and Adolescent Development (pp. 9–29). https://doi.org/10.1002/cad
Smith, J. M., & Alloy, L. B. (2009). A roadmap to rumination: a review of the definition, assessment and conceptualization of this multifaceted construct. Clinical Psychology Review, 29(2), 116–128. https://doi.org/10.1016/j.cpr.2008.10.003.A
Spencer, M. B., & Swanson, D. P. (2013). Opportunities and challenges to the development of healthy children and youth living in diverse communities. Development and Psychopathology, 25, 1551–1566. https://doi.org/10.1017/S095457941300076X
Torrano, F., & Soria, M. (2017). Diferencias de género y aprendizaje autorregulado: el efecto del rendimiento académico previo. Revista Complutense de Educación, 28(4), 1027–1042.
Vandevelde, S., Keer, H. Van, Schellings, G., & Hout-Wolters, B. Van. (2015). Using think-aloud protocol analysis to gain in-depth insights into upper primary school children’s self-regulated learning. Learning and Individual Differences, 43, 11–30. https://doi.org/10.1016/j.lindif.2015.08.027
Vandevelde, S., Van Keer, H., & Merchie, E. (2016). The challenge of promoting self-regulated learning among primary school children with a low socioeconomic and immigrant background. Journal of Educational Research, 110(2), 113–139. https://doi.org/10.1080/00220671.2014.999363
Wang, Z., Soden, B., Deater-deckard, K., Lukowski, S. L., Schenker, V. J., Willcutt, E. G., … Petrill, S. A. (2017). Development in reading and math in children from different SES backgrounds: the moderating role of child temperament. Developmental Science, 20(0555). https://doi.org/10.1111/desc.12380
Weidman, A. C., Augustine, A. A., Murayama, K., & Elliot, A. J. (2015). Internalizing Symptomatology and Academic Achievement: Bi-Directional Prospective Relations in Adolescence. Journal of Research in Personality, 58, 106–114. https://doi.org/10.1016/j.jrp.2015.07.005
Wilcox, R. R., & Tian, T. S. (2011). Measuring effect size: a robust heteroscedastic approach for two or more groups. Journal of Applied Statistics, 38(7), 1359-1368.
Zeidner, M., & Stoeger, H. (2019). Self-Regulated Learning (SRL): A guide for the perplexed. High Ability Studies, 00(00), 1–43. https://doi.org/10.1080/13598139.2019.1589369
Zhu, J., & Mok, M. M. C. (2018). Predicting primary students’ self-regulated learning by their prior achievement, interest, personal best goal orientation and teacher feedback. Educational Psychology, 38(9), 1106–1128. https://doi.org/10.1080/01443410.2018.1497775
Ziegler, A., Stoeger, H., & Grassinger, R. (2011). Actiotope model and self-regulated learning. Psychological Test and Assessment Modeling, 53(1), 161–179.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2021 Daniel Trias, Juan Antonio Huertas, Cindy Mels, Ignacio Castillejo, Valentina Ronqui