Abstract
This review presents a critical reading of the literature on social buffering in human and non-human animals. The term social buffering has been coined to refer to an attenuation of stress responses by the presence of conspecifics. Evidence shows that the buffer seems to be specific for each stage of development, being the mother the factor that attenuates the stress responses during early development and conspecifics of the same age, later in life. An animal model of scarcity of resources revealed that when being reared by a stressed mother, the social buffering effect does not occur. The literature reviewed allows us to approach a key factor related to stress and its effects in the different stages of ontogeny.
References
Abelson, J. L., Erickson, T. M., Mayer, S. E., Crocker, J., Briggs, H., Lopez-Duran, N. L., &Liberzon, I. (2014). Brief cognitive intervention can modulate neuroendocrine stress responses to the Trier Social Stress Test: Buffering effects of a compassionate goal orientation. Psychoneuroendocrinology, 44, 60-70. https://doi.org/10.1016/j.psyneuen.2014.02.016
Adams, R. E., Santos, J. B., & Bukowski, W. M. (2011). The presence of a best friend buffers the effects of negative experiences. Developmental Psychology, 47, 1786–1791. https://doi.org/10.1037/a0025401
Albers, E. M., Riksen-Walraven, J. M., Sweep, F. C. G. J., & de Weerth, C. (2008). Maternal behavior predicts infant cortisol recovery from a mild everyday stressor. Journal of Child Psychology and Psychiatry, 49, 97–103. https://doi.org/10.1111/j.1469-7610.2007.01818.x
Alink, L. R., Cicchetti, D., Kim, J., &Rogosch, F. A. (2012). Longitudinal associations among child maltreatment, social functioning, and cortisol regulation. Developmental psychology, 48(1), 224-236. https://doi.org/10.1037/a0024892
Armario, A., Luna, G., &Balasch, J. (1983). The effect of conspecifics on corticoadrenal response of rats to a novel environment. Behavioral and neural biology, 37(2), 332-337. https://doi.org/10.1016/S0163-1047(83)91425-5
Armario, A., Ortiz, R., &Balasch, J. (1983). Corticoadrenal and behavioral response to open field in pairs of male rats either familiar or non-familiar to each other. Experientia, 39(11), 1316-1317. https://doi.org/10.1007/BF01990391
Biggs, A., Brough, P., & Drummond, S. (2017). Lazarus and Folkman’s psychological stress and coping theory. In The handbook of stress and health: A guide to research and practice (351-364). APA.
Camp, L. L., & Rudy, J. W. (1988). Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 21(1), 25-42. https://doi.org/10.1002/dev.420210103
Childs, E., Vicini, L. M., & De Wit, H. (2006). Responses to the Trier Social Stress Test (TSST) in single versus grouped participants. Psychophysiology, 43(4), 366-371. https://doi.org/10.1111/j.1469-8986.2006.00414.x
Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic medicine, 38(5), 300-314. https://doi.org/10.1097/00006842-197609000-00003
Coe, C. L., Franklin, D., Smith, E. R., & Levine, S. (1982). Hormonal responses accompanying fear and agitation in the squirrel monkey. Physiology & behavior, 29(6), 1051-1057. https://doi.org/10.1016/0031-9384(82)90297-9
Coe, C. L., Mendoza, S. P., Smotherman, W. P., & Levine, S. (1978). Mother–infant attachment in the squirrel monkey: Adrenal response to separation. Behavioral Biology, 22, 256–263. https://doi.org/10.1016/S0091-6773(78)92305-2
Cohen, B. E., Edmondson, D., &Kronish, I. M. (2015). State of the art review: depression, stress, anxiety, and cardiovascular disease. American journal of hypertension, 28(11), 1295-1302. https://doi.org/10.1093/ajh/hpv047
Cohen, S., & McKay, G. (1984). Social support, stress and the buffering hypothesis: A theoretical analysis. In A. Baum, S.E. Taylor, & J.E. Singer (Eds.) Handbook of psychology and health, Vol. 4 (pp. 253-267). Hillsdale.
Cohen, S., & Wills, T. A. (1985). Stress, social support, and the buffering hypothesis. Psychological bulletin, 98(2), 310-357. https://doi.org/10.1037/0033-2909.98.2.310
Cooper, C., &Dewe, P. J. (2008). Stress: A brief history. John Wiley&Sons.
Culbert, B. M., Gilmour, K. M., &Balshine, S. (2019). Social buffering of stress in a group-living fish. Proceedings of the Royal Society B, 286(1910), 20191626.
Dean, A., & Lin, N. (1977). The stress-buffering role of social support. Journal of Nervous and Mental Disease, 165(6), 403-417. https://doi.org/10.1097/00005053-197712000-00006
Dinan, T. G. (1994). Glucocorticoids and the genesis of depressive illness a psychobiological model. The British Journal of Psychiatry, 164(3), 365-371. https://doi.org/10.1192/bjp.164.3.365
Ditzen, B., Neumann, I. D., Bodenmann, G., von Dawans, B., Turner, R. A., Ehlert, U., &Heinrichs, M. (2007). Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women. Psychoneuroendocrinology, 32(5), 565-574. https://doi.org/10.1016/j.psyneuen.2007.03.011
Duval, F., González, F., & Rabia, H. (2010). Neurobiología del estrés. Revista Chilena de Neuro-Psiquiatría, 48(4), 307–318. https://doi.org/10.4067/s0717-92272010000500006
Eisenberger, N. I., Taylor, S. E., Gable, S. L., Hilmert, C. J., & Lieberman, M. D. (2007). Neural pathways link social support to attenuated neuroendocrine stress responses. Neuroimage, 35(4), 1601-1612. https://doi.org/10.1016/j.neuroimage.2007.01.038
Girardi, C. E. N., Zanta, N. C., &Suchecki, D. (2014). Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior. Frontiers in behavioral neuroscience, 8, 319. https://doi.org/10.3389/fnbeh.2014.00319
Glynn, L. M., Christenfeld, N., &Gerin, W. (1999). Gender, social support, and cardiovascular responses to stress. Psychosomatic medicine, 61(2), 234-242. https://doi.org/10.1097/00006842-199903000-00016
Gold, P. W., Machado-Vieira, R., &Pavlatou, M. G. (2015). Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural plasticity, 2015, 1-11. https://doi.org/10.1155/2015/581976
Graves, F. C., & Hennessy, M. B. (2000). Comparison of the effects of the mother and an unfamiliar adult female on cortisol and behavioral responses of pre‐and postweaning guinea pigs. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 36(2), 91-100. https://doi.org/10.1002/(SICI)1098-2302(200003)36:2<91::AID-DEV1>3.0.CO;2-1
Grossman, P., Niemann, L., Schmidt, S., & Walach, H. (2004). Mindfulness-based stress reduction and health benefits: A meta-analysis. Journal of psychosomatic research, 57(1), 35-43. https://doi.org/10.1016/S0022-3999(03)00573-7
Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic–pituitary–adrenocortical axis in humans: Developmental and experiential determinants. Social neuroscience, 10(5), 479-488. https://doi.org/10.1080/17470919.2015.1070747
Guo, Y., Wang, Z., Mayer, E. A., &Holschneider, D. P. (2015). Neonatal stress from limited bedding elicits visceral hyperalgesia in adult rats. Neuroreport, 26(1), 13-16. https://doi.org/10.1097/WNR.0000000000000292
Hanson, J. D., Larson, M. E., &Snowdon, C. T. (1976). The effects of control over high intensity noise on plasma cortisol levels in rhesus monkeys. Behavioral Biology, 16(3), 333-340. https://doi.org/10.1016/S0091-6773(76)91460-7
Heinrichs, M., Baumgartner, T., Kirschbaum, C., &Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398. https://doi.org/10.1016/S0006-3223(03)00465-7
Hennessy, M. B. (1984). Presence of companion moderates arousal of monkeys with restricted social experience. Physiology & Behavior, 33, 693–698. https://doi.org/10.1016/0031-9384(84)90033-7
Hennessy, M. B. (1986). Effects of social partners on pituitary-adrenal activity during novelty exposure in adult female squirrel monkeys. Physiology & behavior, 38(6), 803-807. https://doi.org/10.1016/0031-9384(86)90046-6
Hennessy, M. B. (1988). Both prevention of physical contact and removal of distal cues mediate cortisol and vocalization responses of guinea pig pups to maternal separation in a novel environment. Physiology & behavior, 43(6), 729-733. https://doi.org/10.1016/0031-9384(88)90369-1
Hennessy, M. B., Hornschuh, G., Kaiser, S., &Sachser, N. (2006). Cortisol responses and social buffering: a study throughout the life span. Hormones and Behavior, 49(3), 383-390. https://doi.org/10.1016/j.yhbeh.2005.08.006
Hennessy, M. B., Kaiser, S., &Sachser, N. (2009). Social buffering of the stress response: diversity, mechanisms, and functions. Frontiers in neuroendocrinology, 30(4), 470-482. https://doi.org/10.1016/j.yfrne.2009.06.001
Hennessy, M. B., Maken, D. S., & Graves, F. C. (2000). Consequences of the presence of the mother or unfamiliar adult female on cortisol, ACTH, testosterone and behavioral responses of periadolescent guinea pigs during exposure to novelty. Psychoneuroendocrinology, 25(6), 619-632. https://doi.org/10.1016/S0306-4530(00)00014-7
Hennessy, M. B., O'Leary, S. K., Hawke, J. L., & Wilson, S. E. (2002). Social influences on cortisol and behavioral responses of preweaning, periadolescent, and adult guinea pigs. Physiology & Behavior, 76(2), 305-314. https://doi.org/10.1016/S0031-9384(02)00712-6
Hennessy, M. B., & Ritchey, R. L. (1987). Hormonal and behavioral attachment responses in infant guinea pigs. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 20(6), 613-625. https://doi.org/10.1002/dev.420200607
Herman, J. P., &Cullinan, W. E. (1997). Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends in neurosciences, 20(2), 78-84. https://doi.org/10.1016/S0166-2236(96)10069-2
Hostinar, C. E., Johnson, A. E., & Gunnar, M. R. (2015). Parent support is less effective in buffering cortisol stress reactivity for adolescents compared to children. Developmental Science, 18, 281–297. https://doi.org/10.1111/desc.12195
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development. Psychological bulletin, 140(1), 256-282. https://doi.org/10.1037/a0032671
Ishii, A., Kiyokawa, Y., Takeuchi, Y., & Mori, Y. (2016). Social buffering ameliorates conditioned fear responses in female rats. Hormones and behavior, 81, 53-58. https://doi.org/10.1016/j.yhbeh.2016.03.003
Ivy, A. S., Brunson, K. L., Sandman, C., & Baram, T. Z. (2008). Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience, 154(3), 1132-1142. https://doi.org/10.1016/j.neuroscience.2008.04.019
Kelly, M. M., Tyrka, A. R., Anderson, G. M., Price, L. H., & Carpenter, L. L. (2008). Sex differences in emotional and physiological responses to the Trier Social Stress Test. Journal of behavior therapy and experimental psychiatry, 39(1), 87-98. https://doi.org/10.1016/j.jbtep.2007.02.003
Kirschbaum, C., Klauer, T., Filipp, S. H., & Hellhammer, D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic medicine, 57(1), 23-31. https://doi.org/10.1097/00006842-199501000-00004
Kirschbaum, C., Pirke, K.-M., &Hellhammer, D. H. (1993). The “Trier Social Stress Test” – A tool for investigating psychobiological stress responses in a laboratory setting.Neuropsychobiology, 28(1-2), 76–81. https://doi.org/10.1159/000119004
Kiyokawa, Y., Hiroshima, S., Takeuchi, Y., & Mori, Y. (2014). Social buffering reduces male rats' behavioral and corticosterone responses to a conditioned stimulus. Hormones and behavior, 65(2), 114-118. https://doi.org/10.1016/j.yhbeh.2013.12.005
Kiyokawa, Y., Honda, A., Takeuchi, Y., & Mori, Y. (2014). A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behavioural brain research, 267, 189-193. https://doi.org/10.1016/j.bbr.2014.03.043
Kiyokawa, Y., Kikusui, T., Takeuchi, Y., & Mori, Y. (2004). Partner’s stress status influences social buffering effects in rats. Behavioral Neuroscience, 118, 798–804. https://doi.org/10.1037/0735-7044.118.4.798
Kiyokawa, Y., Li, Y., &Takeuchi, Y. (2019). A dyad shows mutual changesduring social buffering of conditionedfear responses in malerats. Behaviouralbrainresearch, 366, 45-55.
Kiyokawa, Y., Takeuchi, Y., Nishihara, M., & Mori, Y. (2009). Main olfactory system mediates social buffering of conditioned fear responses in male rats. European Journal of Neuroscience, 29(4), 777-785. https://doi.org/10.1111/j.1460-9568.2009.06618.x
Lansford, J. E., Dodge, K. A., Pettit, G. S., Bates, J. E., Crozier, J., &Kaplow, J. (2002). A 12-year prospective study of the long-term effects of early child physical maltreatment on psychological, behavioral, and academic problems in adolescence. Archives of pediatrics & adolescent medicine, 156(8), 824-830. https://doi.org/10.1001/archpedi.156.8.824
LeResche, L., & Dworkin, S. F. (2002). The role of stress in inflammatory disease, including periodontal disease: review of concepts and current findings. Periodontology 2000, 30(1), 91-103. https://doi.org/10.1034/j.1600-0757.2002.03009.x
Levine, S. (2001). Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiology & behavior, 73(3), 255-260. https://doi.org/10.1016/S0031-9384(01)00496-6
Levine, S., Huchton, D. M., Wiener, S. G., & Rosenfeld, P. (1991). Time course of the effect of maternal deprivation on the hypothalamic‐pituitary‐adrenal axis in the infant rat. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 24(8), 547-558. https://doi.org/10.1002/dev.420240803
Levine, S., and Ursin, H. (1991). What is stress?. In M. R. Brown. G. F. Koob, and C. Rivier (Eds.), Stress, Neurobiology and Neuroendocrinology (pp. 3-21). Dekker.
Maken, D. S., & Hennessy, M. B. (2009). Development of selective social buffering of the plasma cortisol response in laboratory-reared male guinea pigs (Caviaporcellus). Behavioral Neuroscience, 123, 347–355. https://doi.org/10.1037/a0015034
Maniam, J., Antoniadis, C. P., Le, V., & Morris, M. J. (2016). A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: impacts on hippocampal markers. Psychoneuroendocrinology, 68, 202-209. https://doi.org/10.1016/j.psyneuen.2016.03.007
Mason, W. A., Kosterman, R., Hawkins, J. D., Herrenkohl, T. I., Lengua, L. J., & McCauley, E. (2004). Predicting depression, social phobia, and violence in early adulthood from childhood behavior problems. Journal of the American Academy of Child & Adolescent Psychiatry, 43(3), 307-315. https://doi.org/10.1097/00004583-200403000-00012
McEwen, B. S., &Sapolsky, R. M. (1995). Stress and cognitive function. Current opinion in neurobiology, 5(2), 205-216. https://doi.org/10.1016/0959-4388(95)80028-X
McPherson, R. J., Gleason, C., Mascher-Denen, M., Chan, M., Kellert, B., &Juul, S. E. (2007). A new model of neonatal stress which produces lasting neurobehavioral effects in adult rats. Neonatology, 92(1), 33-41. https://doi.org/10.1159/000100084
McPherson, R. J., Mascher-Denen, M., &Juul, S. E. (2009). Postnatal stress produces hyperglycemia in adult rats exposed to hypoxia-ischemia. Pediatric research, 66(3), 278-282. https://doi.org/10.1203/PDR.0b013e3181b1bd1b
Mikami, K., Kiyokawa, Y., Ishii, A., &Takeuchi, Y. (2020). Social bufferingenhancesextinction of conditionedfear responses byreducingcorticosteronelevels in malerats. Hormones and behavior, 118, 104654.
Moriceau, S., Roth, T. L., & Sullivan, R. M. (2010). Rodent model of infant attachment learning and stress. Developmental psychobiology, 52(7), 651-660. https://doi.org/10.1002/dev.20482
Moriceau, S., & Sullivan, R. M. (2004). Corticosterone Influences on Mammalian Neonatal Sensitive-Period Learning. Behavioral Neuroscience, 118(2), 274–281. https://doi.org/10.1037/0735-7044.118.2.274
Moussaoui, N., Jacobs, J. P., Larauche, M., Biraud, M., Million, M., Mayer, E., &Taché, Y. (2017). Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: influence of sex. Journal of neurogastroenterology and motility, 23(1), 135-143. https://doi.org/10.5056/jnm16105
Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child development, 67(2), 508-522. https://doi.org/10.1111/j.1467-8624.1996.tb01748.x
Pechtel, P., &Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology, 214(1), 55-70. https://doi.org/10.1007/s00213-010-2009-2
Perry, R. E., Finegood, E. D., Braren, S. H., Dejoseph, M. L., Putrino, D. F., Wilson, D. A., ... & Family Life Project Key Investigators. (2018). Developing a neurobehavioral animal model of poverty: Drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome. Development and psychopathology, 1-20. https://doi.org/10.1017/S095457941800007X
Perry, R., & Sullivan, R. M. (2014). Neurobiology of attachment to an abusive caregiver: Short‐term benefits and long‐term costs. Developmental psychobiology, 56(8), 1626-1634. https://doi.org/10.1002/dev.21219
Prusator, D. K., & Greenwood‐Van Meerveld, B. (2015). Gender specific effects of neonatal limited nesting on viscerosomatic sensitivity and anxiety‐like behavior in adult rats. Neurogastroenterology& Motility, 27(1), 72-81. https://doi.org/10.1111/nmo.12472
Raineki, C., Cortés, M. R., Belnoue, L., & Sullivan, R. M. (2012). Effects of early-life abuse differ across development: Infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. Journal of Neuroscience, 32(22), 7758-7765. https://doi.org/10.1523/JNEUROSCI.5843-11.2012
Raineki, C., Sarro, E., Rincón-Cortés, M., Perry, R., Boggs, J., Holman, C. J., ... & Sullivan, R. M. (2015). Paradoxical neurobehavioral rescue by memories of early-life abuse: The safety signal value of odors learned during abusive attachment. Neuropsychopharmacology, 40(4), 906-914. https://doi.org/10.1038/npp.2014.266
Ricci-Bonot, C., Romero, T., Nicol, C., & Mills, D. (2021). Social buffering in horses (Equuscaballus): Influence of context, companionfamiliarity and companion habituation. Research Square, [preprint] https://doi.org/10.21203/rs.3.rs-266932/v1
Rice, C. J., Sandman, C. A., Lenjavi, M. R., & Baram, T. Z. (2008). A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology, 149(10), 4892-4900. https://doi.org/10.1210/en.2008-0633
Rincón-Cortés, M., & Sullivan, R. M. (2016). Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Translational psychiatry, 6(10), e930. https://doi.org/10.1038/tp.2016.205
Redinbaugh, E. M., MacCallum, R. C., &Kiecolt-Glaser, J. K. (1995). Recurrent syndromal depression in caregivers. Psychology and aging, 10(3), 358-368. https://doi.org/10.1037/0882-7974.10.3.358
Robinson-Drummer P.A., Opendak M., Blomkvist A., Chan S., Tan S., Delmer C., Wood K., Sloan A., Jacobs L., Fine E., Chopra D., Sandler C., Kamenetzky G., & Sullivan R.M. (2019) Infant trauma alters social buffering of threat learning: emerging role of prefrontal cortex in preadolescence. Front. Behav. Neurosci. 13:132. https://doi.org/10.3389/fnbeh.2019.00132
Roth, T. L., & Sullivan, R. M. (2005). Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biological psychiatry, 57(8), 823-831. https://doi.org/10.1016/j.biopsych.2005.01.032
Rukstalis, M., & French, J. A. (2005). Vocal buffering of the stress response: exposure to conspecific vocalizations moderates urinary cortisol excretion in isolated marmosets. Hormones and behavior, 47(1), 1-7. https://doi.org/10.1016/j.yhbeh.2004.09.004
Seltzer, L. J., Prososki, A. R., Ziegler, T. E., &Pollak, S. D. (2012). Instant messages vs. speech: Hormones and why we still need to hear each other. Evolution and Human Behavior, 33, 42–45. https://doi.org/10.1016/j. evolhumbehav.2011.05.004
Seltzer, L. J., Ziegler, T. E., &Pollak, S. D. (2010). Social vocalizations can release oxytocin in humans. Proceedings of the Royal Society B: Biological Sciences, 277, 2661–2666. https://doi.org/10.1098/rspb.2010.0567
Smith, T. E., McGreer-Whitworth, B., & French, J. A. (1998). Close proximity of the heterosexual partner reduces the physiological and behavioral consequences of novel-cage housing in black tufted-ear marmosets (Callithrixkuhli). Hormones and Behavior, 34(3), 211-222. https://doi.org/10.1006/hbeh.1998.1469
Stanton, M. E., Patterson, J. M., & Levine, S. (1985). Social influences on conditioned cortisol secretion in the squirrel monkey. Psychoneuroendocrinology, 10(2), 125-134. https://doi.org/10.1016/0306-4530(85)90050-2
Stanton, M. E., Wallstrom, J., & Levine, S. (1987). Maternal contact inhibits pituitary‐adrenal stress responses in preweanling rats. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 20(2), 131-145. https://doi.org/10.1002/dev.420200204
Stanton, M. E., &Levine, S. (1990). Inhibition of infant glucocorticoid stress response: specific role of maternal cues. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 23(5), 411-426. https://doi.org/10.1002/dev.420230504
Sullivan, R. M. (2003). Developing a sense of safety. Annals of the New York Academy of Sciences, 1008(1), 122-131. https://doi.org/10.1196/annals.1301.013
Sullivan, R. M., Landers, M., Yeaman, B., & Wilson, D. A. (2000). Neurophysiology: Good memories of bad events in infancy. Nature, 407(6800), 38-39. https://doi.org/10.1038/35024156
Takahashi, Y., Kiyokawa, Y., Kodama, Y., Arata, S., Takeuchi, Y., & Mori, Y. (2013). Olfactory signals mediate social buffering of conditioned fear responses in male rats. Behavioural brain research, 240, 46-51. https://doi.org/10.1016/j.bbr.2012.11.017
Taylor, S. E., Burklund, L. J., Eisenberger, N. I., Lehman, B. J., Hilmert, C. J., & Lieberman, M. D. (2008). Neural bases of moderation of cortisol stress responses by psychosocial resources. Journal of Personality and Social Psychology, 95, 197–211. https://doi.org/10.1037/0022-3514.95.1.197
Veenit, V., Riccio, O., & Sandi, C. (2014). CRHR1 links peripuberty stress with deficits in social and stress-coping behaviors. Journal of psychiatric research, 53, 1-7. https://doi.org/10.1016/j.jpsychires.2014.02.015
Vogt, J. L., Coe, C. L., & Levine, S. (1981). Behavioral and adrenocorticoid responsiveness of squirrel monkeys to a live snake: is flight necessarily stressful?Behavioral and Neural Biology, 32(4), 391-405. https://doi.org/10.1016/s0163-1047(81)90826-8
Walker, C. D., Bath, K. G., Joels, M., Korosi, A., Larauche, M., Lucassen, P. J., ... &Taché, Y. (2017). Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress, 20(5), 421-448. https://doi.org/10.1080/10253890.2017.1343296
Watts, A. G. (2007). Anatomy of the HPA axis. Stress science: Neuroendocrinology, 201-203.
Weiner, H. (1991). Behavioral biology of stress and psychosomatic medicine. In M. R. Brown. G. F. Koob, and C. Rivier (Eds.), Stress, Neurobiology and Neuroendocrinology (pp. 23-51). Dekker.
Wiedenmayer, C. P., Magarinos, A. M., McEwen, B. S., & Barr, G. A. (2003). Mother lowers glucocorticoid levels of preweaning rats after acute threat. Annals of the New York Academy of Sciences, 1008(1), 304-307. https://doi.org/10.1196/annals.1301.038
Yada, T., &Tort, L. (2016). Stress and diseaseresistance: immunesystem and immunoendocrineinteractions. In Fishphysiology (Vol. 35, pp. 365-403). AcademicPress.
Yirmiya, K., Motsan, S., Zagoory-Sharon, O., &Feldman, R. (2020). Human attachmenttriggersdifferent social bufferingmechanismsunderhigh and lowearlylife stress rearing. International Journal of Psychophysiology, 152, 72-80
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2021 Matias Alejandro Avellaneda, Giselle Kamenetzky