Psychology, Interamerican
Efecto del Aprendizaje de Morfología en el Procesamiento Visoespacial de Estudiantes Universitarios Chilenos
PDF (Español (España))

Keywords

Procesamiento visoespacial
aprendizaje
anatomía
estudiantes universitarios.

How to Cite

López Velásquez, N. D., Coronado López, J., Herrera-Pino, J., Soto-Añari, M., & Ferrel-Ortega, R. (2017). Efecto del Aprendizaje de Morfología en el Procesamiento Visoespacial de Estudiantes Universitarios Chilenos. Revista Interamericana De Psicología/Interamerican Journal of Psychology, 50(3). https://doi.org/10.30849/rip/ijp.v50i3.127

Abstract

RESUMEN

Objetivo. Verificar el efecto del Aprendizaje de morfología Sobre el Procesamiento visoespacial en Estudiantes Universitarios. Método. Participaron 48 Estudiantes de Kinesiología Que cursaron anatomía (GE); y 43 de Trabajo Social, Que No Estudio anatomía (GNE). Resultados. No se reportaron: diferencias significativas en el pre-test intragrupal, Pero si en el pos-test, un favor del GE, Junto a la ONU del alto efecto en las Dimensiones Copia y Memoria del TFCR. El Análisis intergrupal evidenció la ONU mejor Rendimiento en el post-test, en Copia y Memoria del TFCR. Estas Diferencias no se observaron en el TAAVR en ninguno de los Grupos y Análisis Estadísticos. Conclusiones. El Aprendizaje de anatomía FORTALECE la Función visoespacial, Necesaria para el correcto y futuro profesional Desempeño de Estudiantes Universitarios de Ciencias de la Salud.

 

ABSTRACTO

Objetivo . Comprobar el efecto de la morfología en el aprendizaje de procesamiento visuoespacial en los estudiantes universitarios . Método Kinesiología participaron 48 estudiantes que estudiaron la anatomía (EG); y 43 de Trabajo Social, que estudió la anatomía (UG). Resultados . No se registraron diferencias significativas en la prueba previa intra - grupo, pero en el post-test, en favor, por ejemplo, con un tamaño del efecto de alta TCFR Copia y memoria. El análisis intergrupo mostró un mejor rendimiento en la prueba de mensaje en TCFR Copia y memoria. No se observaron estas diferencias en el TAVLR en ninguno de los grupos y el análisis estadístico. Conclusiones. Aprender anatomía fortalece la función visuoespacial, necesaria para el desempeño adecuado y profesional de los futuros ciencias de la salud de los estudiantes universitarios.

 

https://doi.org/10.30849/rip/ijp.v50i3.127
PDF (Español (España))

References

REFERENCIAS

Allmen, D., Wurmitzer, K., & Klaver, P. (2014). Hippocampal and posterior parietal contributions to developmental increases in visual short-term memory capacity. Cortex, 95-102. doi:10.1016 / j.cortex.2014.07.010

Astrand, E., Wardak, C., & Ben Hamed , S. (2014). Selective visual attention to drive cognitive brain-machine interfaces: from concepts to neurofeedback and rehabilitation applications. Frontiers in systems neuroscience , 8-144. doi:10.3389/fnsys.2014.00144.

Ato, M., López, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 1038-1059. Obtenido de http://www.redalyc.org/resumen.oa?id=16728244043

Baier, B., Müller , N. G., & Dieterich , M. (2014). What part of the cerebellum contributes to a visuospatial working memory task? Annals of Neurology, 754-757. doi:10.1002 / ana.24272

Boggio, P. S., Ferrucci, R., Mameli, F., Martinis, D., Martinis, O., Vergari, M., . . . Priori, A. (2012). Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain stimulation, 223-30. doi:10.1016/j.brs.2011.06.006

Boggio, P. S., Khoury, L. P., Martinis, O. E., de Macedo, E. C., & Fregni, F. (2009). Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of neurology, neurosurgery, and psychiatry, 444-447. doi:10.1136/jnnp.2007.141853.

Borsting, E. (1996). Visual Perception and Reading. Vision Reading, 149-176.

Brunyé, T. T., Holmes, A., Cantelon, J., Eddy, M. D., Gardony, A. L., Mahoney, C. R., & Taylor, H. A. (2014). Direct current brain stimulation enhances navigation efficiency in individuals with low spatial sense of direction. Neuroreport, 1175-9. doi:10.1097/WNR.0000000000000214.

Buckley, C. E., Kavanagh , D. O., Gallagher, T. K., Conroy , R. M., Traynor , O. J., & Neary , P. C. (2013). Does aptitude influence the rate at which proficiency is achieved for laparoscopic appendectomy? Journal of the American College of Surgeons, 1020-7. doi:10.1016/j.jamcollsurg.2013.07.405

Burin, D., Drake, M., & Harris, P. (2007). Evaluación de la Memoria. Buenos Aires: Paidos.

Carlei, C., & Kerzel, D. (2014). Gaze direction affects visuo-spatial short-term memory. Brain and Cognition, 63-68. doi:10.1016 / j.bandc.2014.06.007

Chao , C.-J., Lin, C.-H., & Hsu , S.-H. (2014). An assessment of the effects of navigation maps on drivers' mental workloads. Perceptual and motor skills, 709-731. doi:10.2466 / 22.29.PMS.118k28w4

Cherney, I., Bersted, K., & Smetter, J. (2014). Training spatial skills in men and women. Perceptual and motor skills, 82-99. doi:10.2466/23.25.PMS.119c12z0.

De Benedictis, A., Duffau, H., Paradiso, B., Grandi, E., Balbi, S., Granieri, E., . . . Sarubbo, S. (2014). Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. Journal of Anatomy, 132-151. doi:DOI: 10.1111/joa.12204

Gordon, H. W., & Leighty, R. (1998). Importance of specialized cognitive function in the selection of military pilots. Journal of Applied Psychology, 38-45. doi:http://dx.doi.org/10.1037/0021-9010.73.1.38

Hampstead, B. M., Brown, G. S., & Hartley, J. F. (2014). Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation. Brain stimulation, 314-324. doi:http://dx.doi.org/10.1016/j.brs.2013.12.006

Hinze, S. R., Williamson, V. M., Shultz, M. J., Williamson, K. C., Deslongchamps, G., & Rapp, D. (2013). When do spatial abilities support student comprehension of STEM visualizations? Cognitive processing, 129-142. doi:10.1007 / s10339-013-0539-3.

Holznecht , C., Schmidt, T., & Gould, J. (2012). The impact of training under different visual-spatial conditions on reverse-alignment laparoscopic skills development. Surgical endoscopy, 120-123. doi: 10.1007/s00464-011-1836-5

Hoyek, N., Collet, C., Rastello, O., Fargier, P., Thiriet, P., & Guillot, A. (2009). Enhancement of mental rotation abilities and its effect on anatomy learning. Teaching and learning in medicine, 201-206. doi:10.1080/10401330903014178

Kashihara, K., & Nakahara, Y. (2011). Evaluation of task performance during mentally imaging three-dimensional shapes from plane figures. Perceptual and motor skills, 188-200. doi:10.2466/03.04.22.PMS.113.4.188-200

Kosmidis, M., Economou, A., LiozidouA, & Yiannis, G. (2014). B-88Neurocognitive Correlates of Driving Behavior. Archives of clinical neuropsychology, 569-570. doi:10.1093/arclin/acu038.176.

Langlois , J., Wells , G., Lecourtois , M., Bergeron , G., Yetisir , E., & Martin , M. (2013). Sex differences in spatial abilities of medical graduates entering residency programs. 368-375. doi:10.1002/ase.1360

Lufler, R., Zumwalt, A., Romney, C., & Hoagland, T. (2012). Effect of visual-spatial ability on medical students' performance in a gross anatomy course. Anatomical sciences education, 3-9. doi:10.1002/ase.264

Luursema,, J.-M., Buzink, S. N., Verwey, W. B., & Jakimowicz, J. J. (2010). Visuo-spatial ability in colonoscopy simulator training. Advances in health sciences education: theory and practice, 685-694. doi:10.1007/s10459-010-9230-y

Maguire, E. A., Woollett , K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 1091-1101. doi:10.1002 / hipo.20233

Milner-Bolotin, M., & Nashon, S. M. (2012). The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology. Protoplasma, 25-30. doi:10.1007/s00709-011-0346-6

Nugent, E., Hseino, H., Boyle, E., Mehigan, B., Ryan, K., Traynor, O., & Neary, P. (2012). Assessment of the role of aptitude in the acquisition of advanced laparoscopic surgical skill sets: results from a virtual reality-based laparoscopic colectomy training programme. International journal of colorectal disease, 1207-14. doi:10.1007/s00384-012-1458-y

Price, M., Susana, M., Calderon, H., & Luis, J. (2011). Influencia de la percepción visual en el aprendizaje. Ciencia & tecnología para la salud visual y ocular, 93-101.

Prince, C., & Daniel, M. (2014). A-59Prompting for Delayed Visuospatial Memory: Effect on Memory Test Performance. Archives of clinical neuropsychology, 525. doi:10.1093/arclin/acu038.59.

Rengier, F., Häfner, M., Unterhinninghofen,, R., Nawrotzki, R., Kirsch, J., Kauczor, H.-U., & Giesel, F. (2013). Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability. European journal of radiology., 1366-7. doi:10.1016/j.ejrad.2013.01.010

Rochford , K. (1985). Spatial learning disabilities and underachievement among university anatomy students. Medical education, 13-26.

Sapkota, R. P., Pardhan, S., & Van der Linde, I. (2013). Manual tapping enhances visual short-term memory performance where visual and motor coordinates correspond. British journal of psychology, 249-264. doi:10.1111/j.2044-8295.2012.02115.x.

Teixeira, C., Salomão, R. C., Rodrigues, A. R., Horn, F. K., Silveira, L. C., & Kremers, J. (2014). Evidence for two types of lateral interactions in visual perception of temporal signals. Journal of Vision, 1-18. doi:10.1167/14.9.10.

Thalheimer, W., & Cook, S. (2 de Sept de 2002). How to calculate effect sizes from published research: A simplified methodology. Dember , USA: WORK-LEARNING RESEARCH.

Tseng, P., Hsu, T.-Y., Muggleton, N., Tzeng, O. J., Hung, D. L., & Juan, C.-H. (2010). Posterior parietal cortex mediates encoding and maintenance processes in change blindness. Neuropsychologia, 63-70. doi:doi:10.1016/j.neuropsychologia.2009.12.005

van Dongen, K., Ahlberg, G., Bonavina, L., Carter, F. J., Grantcharov, T. P., Hyltander, A., . . . Broeders, I. (2011). European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills. Surgical endoscopy, 166-171. doi:10.1007/s00464-010-1151-6

Vorstenbosch, M., Klaassen, T. P., Donders, A. R., Kooloos, J., Bolhuis, S., & Laan, R. (2013). Learning anatomy enhances spatial ability. Anatomical sciences education, 257-262. doi:10.1002/ase.1346

Weiss, A. H., Biron, T., Lieder, I., Granot, R. Y., & Ahissar, M. (2014). Spatial vision is superior in musicians when memory plays a role. Journal of vision, 18. doi:10.1167 18. / 14.09.18

Wolbers, T., & Wiener, J. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in human neuroscience, 571. doi:10.3389/fnhum.2014.00571

Authors who publish with this journal agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication, with the work [SPECIFY PERIOD OF TIME] after publication simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).