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A b s t r a c t . All correlational statistics must be interpreted with consideration given 
to certain constraints. The use of the Pearson product moment correlation coefficient as 
a descriptive measure of relationship necessitates the assumption that the correlated 
variables be distributed bivariately normal. This assumption is probably not met in 
some applications of the Pearson product moment correlation coefficient as a descriptive 
statistic. This study was undertaken to establish some empirical evidence as to the con­
sequences of this action. The results indicate that lack of bivariate normality can have 
a sizeable effect on the magnitude of obtained values of the Pearson product moment 
correlation coefficient.

R e s u m e n . Estadísticas correlaciónales deben ser interpretadas bajo ciertas restric­
ciones. E l uso del coeficiente de correlación de Pearson como medida de relación re­
quiere la suposición de que las variables correlacionadas se destribuyen bivariantemente 
normales. Esta suposición probablemente no es observada en muchas aplicaciones del 
coeficiente de correlación de Pearson como estadística descriptiva. Este estudio examinó 
las consecuencias de la falla de observarse la normalidad bivariante de las variables. 
Los resultados indican que esta falla tiene efectos considerables sobre la magnitud del 
coeficiente de correlación de Pearson que se obtiene.

As long as the Pearson product moment correlation coefficient has been 
in use it has been recognized that shape oí the bivariate distribution in­
fluences the magnitude of this statistic. This influence may only be im­
portant for some uses of the Pearson product moment correlation coeffi­
cient, however.

Carroll (196 1, p. 349) stated that the two commonly recognized uses of 
correlational methods are to serve “ ( 1 )  as a basis for prediction from one 
variable to another, or from a set of variables to one or more dependent 
variables, and (2) as a way of measuring something called ‘relationship’ 
between variables.” In the behavioral sciences the use of correlation as a 
measure of “relationship” frequently occurs in psychometrics ( especially 
in test construction) and in applications of factor analysis. Binder (1959) 
indicated that for such uses of correlation the appropriate model is the bi­
variate normal model. This study is an attempt to investigate the Pearson 
product moment correlation technique as a measure of the relationship be­
tween variables when certain assumptions of the bivariate normal model 
are not met.
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In the paper in which he published his mathematical development of a 
correlational technique, Karl Pearson (1895) called attention to the in­
accuracy of the product moment correlation coefficient when the variables 
are not bivariate normally distributed. As a solution to the problem he 
proposed that a correlational technique should be developed which could 
be used with distributions with any degree of skewness.

Yule (1897) derived a correlational method based only on the assump­
tions inherent in the least square procedure of curve Bitting. In this manner 
he was able to arrive at several descriptive interpretations of such a pro­
duct moment method when no distributional assumptions are made. The 
interpretation which is relevant for this paper involves the effect produced 
on the magnitude of the correlation coefficient when the condition of bi­
variate normality does not occur. Yule was able to show that although 
product moment correlation coefficients take on values between plus and 
minus one regardless of distributional assumptions the maximum absolute 
value of the correlation coefficient must be less than one if the true regres­
sion is not linear.

In a presentation of factors which affect correlation coefficients McNe- 
mar (1969, pp. 186-187) discussed some effects evidenced by skewed 
marginal distributions which could result from the joint distribution of the 
population being other than bivariate normal. He stated that lack of nor­
mality, particularly due to skewness in the marginal distributions, was 
probably indicative of non-linear regression lines, heterogeneity of array 
variances, and skewed array distributions. Further, when the marginal 
distributions are skewed in the same direction and the true (population) 
correlation is negative, the range of the attainable values of r will generally 
be somewhat reduced at the lower extreme (minus one). In addition, 
when the marginal distributions are skewed in opposite directions and the 
true (population) correlation is positive, the range of the attainable values 
of r will generally be somewhat reduced at the upper extreme (plus one). 
For example, when the marginal distribution on the abcissa is negatively 
skewed to the extreme and the marginal distribution on the ordinate is 
positively skewed to the extreme, the majority of cases in such a scatter- 
diagram will have to appear in the lower right quadrant. Since for perfect 
positive correlation, all the cases would have to fall on a diagonal from the 
lower left to the upper right, it would be impossible to discover a correla­
tion approaching plus one from such a bivariate population. McNemar 
also states that the magnitude of the distortion of the correlation will be 
greater when the “degree of relationship” is high than when it is low. Thus 
it appears that the bias in the magnitude of the value of correlation can be 
seen as a function of the skewness of the marginal distributions.

This study was conducted in order to investigate some of the effects pro-
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Effects of Non-Normal Distribution

duced on the values of the Pearson product moment correlation coefficient 
when populations are not distributed in a bivariate normal manner. Skew­
ness of the marginal distributions is used as the indicator of departure from 
the bivariate normal.

The effects of marginal skewness on sampling distributions of the Pear­
son product moment correlation coefficient have been investigated by E. S. 
Pearson ( 1929, 1931, 1932); Chesire, Oldis and E. S. Pearson ( 1932); Dun- 
âP ( ! 93i ) ;  Baker (1930); Rider (1932); Norris and Hjelm (i960); and 

Veldman ( 1969). In general these studies reveal that the presence of mar­
ginal skewness is an indication that the sampling distribution of the Pear­
son product moment correlation coefficient is disrupted. However, since 
these studies utilizing the sampling distribution to attempt to determine 
the effects of lack of bivariate normality on obtained correlation coefficients 
assume that the relationship present in a non-normal bivariate distribution 
was adequately described by the Pearson product moment correlation co­
efficient, this investigation took a different approach.

This investigation was performed by generating bivariate normal popu­
lations for particular degrees of relationship using the mathematical defi­
nition of the ideal bivariate surface utilizing a large digital computer. Each 
of the resulting bivariate distributions was then repeatedly systematically 
skewed using power transformations. After transformation, correlation co­
efficients were computed. Tabulations of these correlation coefficients for 
particular marginal distribution shapes and original correlations are indica­
tive of the effect of lack of bivariate normality on the Pearson product mo­
ment correlation technique. Skewness and kurtosis of the marginal distri­
butions as defined by Fisher ( 1958) were used as measures of distribution 
shape.

PROCEDURE

The steps followed in the conduct of this study were 1  ) generation of 
bivariate normal populations with a specific degree of correlation, 2 ) trans­
formation of these data to induce skewness, and 3 ) calculation of a corre­
lation coefficient on the skewed data.

The distributions were generated by using the mathematical expression 
of the bivariate normal surface. This expression in terms of the variables 
X  and Y is

H = Ae 'P

Where H is the height of the surface

A = _________ N
2IT °X °Y Nl -
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p ----- -— =- ( - 4 . - 4 -------

2(1 - r ) ^ *X  °Y  °X*Y '

N is total number of X,Y pairs

x and y are deviations of particular values of X and Y 

from their respective means

X and Y are standard deviations of the X and Y values 

and r is the correlation between the X and Y variables.

The procedure followed in the generating process consisted of obtain­
ing values of H by causing the X and Y values to vary between definite 
limits. The bivariate surface was thus defined by the values of height ( H ) 
for appropriate values of X and Y. Populations of 100,000 X, Y pairs were 
generated by causing the X  and Y variables to assume all integer values 
between one and 99. The marginal distributions for X and Y had means of 
50.0 and standard deviations of ten. Ten populations representing correla­
tions of ¿.90 , ¿.70, i .5 0 , i .3 0  and + .10  were generated.

Since in this procedure the values of X and Y were only allowed to as­
sume integer values, a discrete variable was used to approximate values 
of a continuous variable. For this reason and due to the non-infinite size of 
the population, values of skewness and kurtosis for the X and Y distribu­
tions depart slightly from the values expected for an ideal univariate nor­
mal distribution.

In order to produce skew’ness, non-linear power transformations were 
performed on the values of the X  and Y distributions. This transformation 
consisted of raising the X or Y values of the marginal distributions to some 
decimal power. Thirteen values of power ranging from 1.0 to 10.6 with in­
tervals of .8 between successive values were used.

It can be seen that this transformation accomplishes a rescaling of the 
X and Y values such that they no longer form an equal interval scale. Since 
frequency of occurrence of the particular X or Y  value in the marginal dis­
tribution is unchanged but the interval between the values is changed, the 
transformation changes the shape of the distribution. When the exponen­
tial term for the transformation is greater than one, positive skewness re­
sults; and when the exponential term of the transformation is less than one, 
but greater than zero, negative skewness results. Theoretically, in this man­
ner marginal distributions with any degree of skewness may be obtained.

However, practical problems arise when exponents between one and 
zero are used to produce negative skewness. These problems arise because 
as the exponent approaches zero, the standard deviation approaches the
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mid-range interval size. As the size of the standard deviation equals or is 
less than the interval size, a correction for grouping should be applied to 
the standard deviation and all statistics involving higher moments of the 
distribution. However, procedures to correct for grouping error assume 
equal interval scales and normal distributions. To circumvent these prob­
lems, negatively skewed distributions were produced through the use of 
linear transformation on the positively skewed distributions. This linear 
transformation produced negatively skewed distributions by taking the 
mirror image of the positively skewed distributions. The problems of 
grouping were thus avoided when generating positively skewed distribu­
tions because the standard deviation remained much larger than the mid­
range interval size as the exponent increased.

After the shape of the marginal distributions had been altered, the re­
mainder of the procedure consisted of quantifying the shape of the trans­
formed distributions and computing the correlation for the transformed 
data. Any change in the correlation coefficient from its value previous to 
the transformation process can be attributed to the effect of transformation 
on the correlation coefficient.

The study w'as conducted by obtaining observed correlation coefficients 
for each of the 10 bivariate populations for each of the pairings of the 13  
values of positive and the 13 values of negative skewness. Each of the ob­
served correlation coefficients representing some particular value of mar­
ginal skewness of the X  variable and some particular value of marginal 
skewness for the Y variable for some bivariate population with a particular 
correlation will be referred to as belonging to one of two cases. Case One 
involves the effects of distribution shape on calculated r when both mar­
ginal distributions are skewed in the same direction. Case Two involves 
the effects of distribution shape on calculated r w'hen the marginal distri­
butions are skew'ed in opposite directions.

RESULTS

The results are presented according to the two configurations of direc­
tion of skewness of the marginal distributions in tabular form and in graphi­
cal form. Information on the parameters of a transformed distribution is 
given in Table 1. This table show's the mean, standard deviation, skewness, 
and kurtosis of a univariate distribution which results from the transfor­
mation of a normal distribution by the values of power shown. The normal 
distribution consisted of 100,000 cases and had a mean of 50.0 and a stan­
dard deviation of 10.0 before transformation.

Case One
Tables 2 through 1 1  present values of observed r for differing amounts
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of skewness for marginal distributions of X and Y when both are skewed 
in the same direction, i.e., when the skewness for X and Y have the same 
sign. Each table represents a distribution with a different degree of rela­
tionship. The table for negative skewness of X  and Y would be identical to

TABLE 1

Changes in Distribution Parameters Caused by a Power Transformation 
on the Ordinate Values of a Normal Distribution

Power Mean

Standard
Deviation Skewness Kurtosis

1.00 5.0000 X 10 1.0000 X 10 .0000 -.0004

1.80 1.1736 X 103 4.1288 X 102 .4756 .2769

2.60 2.8311 X 104 1.4191 X 10 .9339 1.3105

3.40 6.9582 X 105 4.5611 X 105 1.4123 3.2091

4.20 1.7438 X 107 1.4258 X 107 1.9408 6.3440

5.00 4.4500 X 108 4.4123 X 10 2.5497 11.4154

5.80 1.1551 X 1010 1.3641 X 1010 3.2738 19.6437

6.60 3.0470 X 10U 4.2348 X 1011 4.1554 33.1135

7.40 8.1606 X 1012 1.3243 X 10lj 5.2476 55.3373

8.20 2.2174 X 1014 4.1797 X 1014 6.6162 92.1373

9.00 6.1087 X 1015 1.3329 X 1016 8.3422 152.9443

9.80 1.7051 X 101' 4.2978 X 1017 10.5223 252.5963

10.60 4.8198 X 1018 1.4017 X 1019 13.2689 413.6408

the table for positive skewness of X  and Y. Therefore only one table is 
necessary to present the results of both negative and positive skewness for 
a particular value of original r. ( See notes at the bottom of each table for 
information needed to interpret the table.)

Examination of Tables z through 1 1  shows that higher absolute values 
of skewness produced the greatest reduction in observed r’s from their 
original value. Also the reduction in observed r’s is much greater for the 
negative values of original r s than for the positive values. Although a table 
is not provided for an original r of zero, results not shown demonstrate that 
all observed r’s for an original r of zero are also zero.
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TABLE 2

Effect of Degree of Skewness on Calculated r when the Configuration of the Marginal Distribution
Produces the Greatest Curtailment of Calculated r for an Actual r of +.90

Skewness on Y
Skewness

on X
.0000 .4756 .9338 1.4121 1.9404 2.54S8 3.2718 4.1514 5.2398 6.6018 8 .3163 10.4774 13.1941

.0000 .9000 .8942 .8787 .8558 .8269 .7934 .7564 .7167 .6752 .6325 .5894 .5465 .5044

.4756 .8780 .8532 .8221 .7862 .7468 .7051 .6618 .6177 .5734 .5296 .4868 .4454

.9338 .8205 .7827 .7414 .6979 .6532 .6079 .5628 .5184 .4751 .4335 .3937
1.4121 .7397 .6945 .6484 .6020 .5560 .5111 .4675 .4256 .3858 .3483
1.9404 .6468 .5992 .5523 .5067 .4627 ■ .4206 .3807 .3432 .3082

2.5488 .5511 .5046 . 4600 .4176 .3776 .3400 .3051 .2727
3.2718 .4592 .4163 .3759 .3382 .3031 .2708 .2411
4.1514 .3754 .3374 .3022 .2698 .2401 .2131

5.2398 .3019 .2693 . 2396 .2125 . 1880

6.6018 .2395 .2123 .1878 .1657

8.3163 .1878 . 1656 .1458

10.4774 .1458 . 1281
13.1941 . 1123

>!ote. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis-

tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 
direction], the true relationship should be interpreted as being negative and the sign of all calculated r 's  in the body 
of the table should be negative also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­
posite directions), the true relationship should be interpreted as being positive and the sign of all calculated r 's in 

the body of the table should be positive also.



TADLE 3

Effect of Degree of Skewness on Calculated £  when the Configuration of the Marginal Distribution
Produces the Least Curtailment of Calculated r for an Actual r of +.90

Skewness on Y

Skewness

0n X .0000 .4756 .9338 1.4121 1.9404 2.5488 3.2718 4 .1514 5.2398 6 .6018 8.3163 10.4774 13.1941

. 0000 .9000 .8942 .8787 .8558 .8269 .7934 . 7564 .7167 . 67S2 .6325 .5894 .5465 .5044

.4756 .8988 .8928 .8782 .8566 .8292 .7971 ,7614 .7227 .6820 .6400 .5974 .5549

.9338 .8958 .8895 .8754 .8546 .8282 .7972 .7624 .7247 .6848 .6435 .6016

1.4121 .8912 .8846 .8707 .8505 .8249 .7947 .7607 .7238 .6847 .6442

1.94 04 .8852 .8783 .8645 .8447 .8196 .7901 .7569 .7207 .6825

2.5488 .8781 .8708 .8571 .8375 .8129 .7839 .7514 .7161

3.2718 .8699 .8622 .8484 .8290 .8049 .7765 .7447

4.1514 .8606 .8526 .8387 .8196 .7957 .7680

S .2398 .8503 .8420 .8281 .8091 .7857

6.6018 ,8392 .8305 .8166 .7978

8.3163 .8271 .8182 .8043

10.4774 .8143 .8052

13.1941 .8008

Note. This table can be interpreted in two ways, depending ort the signs of the skewness for the X and Y marginal dis-
tributions. If both the X and Y marginal skewnesses have either positive or negative signs (bnth are skewed in the same

direction), tiie true relationship should be interpreted as being positive and the sign of all calculated r 's  in the body 
of the table should be positive also. If  the X and Y marginal skewnesses have opposite signs (X and Y arc skewed in op­

posite directions), the true relationship should be interpreted as being negative and the sign of all calculated r 's  in 
the body of the table should be negative also.



TABLE 4

Effect of Degree of Skewness on Calculated r when the Configuration of the Marginal Distribution
Produces the Greatest Curtailment of Calculated r for an Actual r̂  of +.70

Skewness
Skewness on Y

on X
. 0 0 0 0  . 4 7 5 6 . 9 3 3 8 1 . 4 1 2 2 1 . 9 4 0 7 2 . 5 4 9 4 3 . 2 7 3 1 4 . 1 5 4 1 5 . 2 4 5 3 6 . 6 1 2 3 8 . 3 3 5 5 1 0 . 5 1 1 3 1 3 . 2 5 1 4

. o o o n . 7 0 0 0  . 6 9 5 5 . 6 8 3 4 . 6 6 5 6 . 6 4 3 1 . 6 1 7 1 . 5 8 8 3 . 5 5 7 4 . 5 2 5 1 . 4 9 1 9 . 4 5 8 4 . 4 2 5 0 . 3 9 2 1

.4 7 56 . 6 8 4 7 . 6 6 7 0 . 6 4 4 3 . 6 1 7 6 . 5 8 8 1 . 5 5 6 5 . 5 2 3 4 . 4 8 9 6 . 4 5 5 6 . 4 2 1 7 . 38 8 4 . 3 5 6 1
. 9 3 3 8 . 6446 . 6 1 7 8 . 5 8 7 9 . 5 5 5 9 . 5 2 2 5 . 4 8 8 3 . 4 5 3 9 . 4 1 9 7 . 3 8 6 2 .3537 . 3 2 2 4

1.4122 . 5 8 7 8 .5556 .5219 .4875 . 4 5 3 0 . 4 1 8 7 . 3 8 5 0 . 3 5 2 4 . 3 2 1 1 . 2 9 1 3
1 . 0 4 0 7 . 5 2 1 8 . 4 8 7 2 . 4 5 2 5 . 4 1 8 1 . 3 8 4 5 . 3 5 1 9 . 3 2 0 6 . 2 9 0 8 . 2 6 2 6
2 . 5 4 9 4 . 4 5 2 4 . 4 1 7 9 . 3 8 4 2 . 3 5 1 7 . 3 20 4 . 2 9 0 6 . 2 6 2 6 . 2 3 6 2
3 . 2 7 3 1 . 3 8 4 2 . 3 5 1 6 . 3 2 0 4 . 2 9 0 7 . 2 6 2 7 . 2 3 6 4 . 2 1 2 0
4 . 1 5 4 1 .3204 . 2908 .2028 .2367 . 2123 . 1898

5 . 2 4 5 3 .2629 . 2 3 6 8 . 2 1 2 6 . 1 9 0 1 . 1 6 9 5
6 . 6 1 2 3 . 2 1 2 7 . 1 9 0 3 . 1 6 9 7 . 1 5 0 9
8 . 3 3 5 5 . 1 6 9 8 . 1 5 1 1 . 1 3 4 1

1 0 . 5 1 1 3 . 1 3 4 2 . 1 1 8 8
1 3 . 2 5 1 4 . 1 0 4 9

Note. This tabic can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis­
tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 

direction), the true relationship should be interpreted as being negative and the sign of all calculated r 's  in the body 
of the table should be negative also. If the X and Y marginal skewnesses have opposite signs (X and Y arc skewed in op­

posite directions), the true relationship should be interpreted as being positive and the sign of all calculated r/s in 

the body of the table should be positive also.



TABLE 5

tffect of Degreo of Skewness on Calculated r when the Configuration of the Marginal Distribution
Produces the Least Curtailment of Calculated ir for an Actual jr of +.70

Skewness 
on X

Skewness on Y

.0000 .4756 .9338 1.4122 1.9407 2.5494 3.2731 4.1541 5.2453 6.6123 8.3355 10.5113 13.2514

.0000 .7000 . 6955 . 6834 .6656 .6431 .6171 .5883 .5574 .5251 .4919 .4584 .4250 .3921

.4756 .6973 .6910 .6782 .6602 .6379 .6121 .5837 .5532 .5212 .4884 .4553 .4223

.9338 .6901 .6824 . 6689 .6506 .6284 .6028 .5747 . 5445 .51.31 .4808 .4482
1.4122 .6795 .6705 . 6564 .6378 .6155 .5901 .5623 .5326 .5017 .4701
1.9407 .6659 .6559 .6412 .6223 .6000 .5748 .5473 .5182 .4880
2.5494 .6499 .6390 .6237 .6046 .5823 .5573 .5303 .5019
3.2731 .6317 .6200 .6042 .5850 .5628 .5382 .5118
4.1541 .6117 . 5993 .5832 .5638 .5419 .5177
5.2453 .5901 .5771 .5608 .5415 .5198
6.6123 .5672 .5538 .5373 .5182
S .3355 .5433 .5296 .5131

10.5113 .5186 .5048
13.2514 .4935

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis­
tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 
direction), the true relationship should be interpreted as being positive and the sign of all calculated r 's  in the body 
of the tabic should be positive also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­

posite directions), the true relationship should be interpreted as being negative and the sign of all calculated r_'s in 
the body of the table should be negative also.



TABLE 6

Effect of Depree of Skewness on Calculated £  when the Configuration of the Marginal Distribution

Produces the Greatest Curtailment of Calculated r for an Actual r of 4.50

S k e w n e s s  on Y
S k e w n e s s

on X
.0000 .4756 .9338 1.4123 1.9408 2.5497 3.2736 4.1552 5.2472 6.6156 8.3412 10.5207 13.2665

.0000 .5000 . 4968 .4882 .4754 .4594 .4408 .4202 .3981 .3750 .3513 .3274 .3035 .2801

.4756 .4904 .4789 .4637 .4455 .4252 .4032 .3801 .3563 .3322 .3081 .2847 .2612

.9338 .4650 .4478 .4280 .4065 .3836 .3600 .3359 .3119 .2880 .2648 .2422
1.4123 .4290 .4080 .3857 .3624 .3386 .3147 .2910 .2678 .2452 .2236

1.9408 .3864 . 3636 .3403 .3167 . 2933 .2702 .2477 .2261 .2055

2.5497 .3408 .3177 .2946 .2718 .2496 .2282 .2076 .1881

3.2736 .2951 .2727 .2508 .2296 .2092 .1898 .1715

4.1552 .2512 .2303 .2102 .1911 .1729 . 1558

5.2472 .2106 . 1917 .1737 .1569 .1411

6.6156 .1740 .1574 .1418 .1272

8.3412 .1420 .1276 .1143

10.5207 .1145 .1023

13.2665 .0913

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis 
tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 

direction), the true relationship should be interpreted as being negative and the sign of all calculated r 's  in the body 
of the table should be negative also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­
posite directions), the true relationship should be interpreted as being positive and the sign of all calculated r 's  in 

the body of the table should be positive also.



TABLR 7

Effect of the Degree of Skewness on Calculated r when the Configuration of the Marginal Distribution 
Produces the Least Curtailment of Calculated r for an Actual r of *.50

Skewness on Y

Skewness

on X
.0000 .4756 .9338 1.4123 1.9408 2.5497 3.2736 4.1552 5.2472 6.6156 8.3412 10.5207 13.2665

.0000 .5000 .4968 .4882 .4754 .4594 .4408 .4202 .3981 .3750 .3513 .3274 .3035 .2801

.4756 .4968 .4911 .4810 .4673 .4506 .4316 .4108 .3887 .3657 .3422 .3185 .2950

. 9338 .4883 .4807 .4694 .4548 .4377 .4184 .3976 .3756 .3528 .3296 .3064

1.4123 .4757 .4667 .4543 .4391 .4216 .4022 .3814 .3597 .3373 .3147

1.9408 .4599 .4497 .4365 .4208 .4030 .3837 .3632 .3418 .3201

2.5497 .4415 .4303 .4165 .4005 .3827 .3636 .3434 .3227
3.2736 .4211 .4091 .3949 .3787 .3611 .3423 .3227

4.1552 .3990 . 3865 .3721 .3560 .3386 .3203
5.2472 .3758 .3630 .3485 .3326 .3156
6.6156 .3518 .3389 .3245 .3090
8.3412 .3275 .3146 .3005

10.5207 .3032 .2905
13.2665 .2792

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis­

tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 
direction), the true relationship should be interpreted as being positive and the sign of all calculated r ’s in the body 
of the table should be positive also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­
posite directions), the true relationship should be interpreted as being negative and the sign of all calculated r's in 
the body of the table should be negative also. -



TABLE 8

Effect of Degree of Skewness on Calculated £  when the Configuration of the Marginal Distribution
Produces the Greatest Curtailment of Calculated r for an Actual r of +.30

Skewness 

on X

Skewness on Y

.0000 .4756 .9339 1.4123 1.9408 2.5497 3 .2738 4.1554 5.2476 6.6162 8.34 22 10.5223 13.2689

.0000 .3000 .2981 .2929 .2852 . 2756 .2645 .2521 .2389 .2250 .2108 . 1964 .1821 .1680

.4756 .2950 .2888 .2803 . 2699 .2582 .2454 .2318 .2177 .2034 .1890 .1748 . 1608

.9339 .2818 .2726 .2617 .2496 . 2365 .2228 .2087 .1945 . 1803 .1663 .1527

1.4123 .2629 .2516 .2393 .2262 .2125 .1986 . 1846 .1708 .1572 .1440

1.9408 .2402 .2279 .2148 .2014 .1878 .1742 .1607 .1476 .1350

2.5497 .2156 .2028 .1897 .1765 .1633 .1504 .1379 .1259

3.2738 .1903 .1776 .1649 .1524 .1401 .1282 .1168

4.1554 .1654 .1533 .1414 .1297 .1185 .1078

5.2476 .1418 .1305 .1196 .1091 .0990

6.6162 .1199 .1097 .0999 .0906

8.3422 .1002 .0911 .0825

10.5223 .0827 .0748

13.2689 .0676

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis 

tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 

direction), the true relationship should be interpreted as being negative and the sign of all calculated r's in the hody 

of the table should be negative also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­

posite directions), the true relationship should be interpreted as being positive and the sign of all calculated r 's  in 

the body of the table should be positive also.



TABLF 9

Effect of Degree of Skewness on Calculated r ‘..her. the Configuration of the Marginal Distribution

Produces tiie Least Curtailment of Calculated r for a:i Actual r of +.30

. . 1

Skewness 
or. X

Skewness on Y

.0000 .4756 .9339 1.4123 1.9408 2.5497 3.2738 4.1554 5.2476 6.6162 8.3422 10.5223 13.268S

.0000 .3000 .2981 .2929 .2852 .2756 .2645 .2521 .2389 .2250 .2108 .1964 .1821 .1680

.4756 .2973 .2932 . 2865 .2778 .2673 .2556 .2429 .2294 .2154 .2013 .1871 .1729

. 9339 .2902 .2845 .2766 .2670 .2560 .2439 .2309 .2174 .2036 .1897 .1758
1.4123 .2797 .2728 .2640 .2538 .2424 .2301 .2172 .2038 .1903 . 1768

1.9408 .2667 .2588 .2494 .2388 .2273 .2150 .2022 .1892 .1762

2.5497 .2518 .2433 .2335 .2227 .2111 .1990 .1866 .1741

3.2738 .2356 .2266 .2166 .2058 .1944 .1827 .1707
4.1554 .2185 . 2093 . 1993 .1886 .1776 . 1663

5.2476 .2009 .1917 .1818 .1715 . 1609
6.6162 .1832 .1741 .1646 .1547
8.3422 . 1658 .1570 .1478

10.5223 .1489 .1405

13.2689 .1328

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis­

tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 

direction), the true relationship should be interpreted as being positive and the sign of all calculated r 's  in the body 
of the table should be positive also. Tf the X and Y marginal skewnesses have opposite signs CX and Y are skewed in op­
posite directions), the true relationship should be interpreted as being negative and the sign of all calculated r 's  in 
the body of the table should be negative also.



TABLE 10

Effect of Degree of Skewness on Calculated r when the Configuration of the Marginal Distribution

Produces the Greatest Curtailment of Calculated r for an Actual r of +.10

Skewness on Y
Skewness

on X
.0000 .4756 .9339 1.4123 1.9408 2.5497 3.2738 4.1554 5.2476 6.6163 8.3423 10.5224 13.2691

.0000 .1000 .0994 .0976 .0951 .0919 .0882 .0840 .0796 .0750 .0703 .0655 .0607 .0560

.4756 .0986 .0968 .0941 .0908 .0871 .0829 .0785 .0739 .0691 .0644 .0596 .0550

.9339 .0949 .0922 .0889 .0851 .0810 .0766 .0720 .0673 .0626 .0580 .0534
1.4123 .0895 .0862 .0825 .0784 .0741 .0696 .0650 .0604 .0559 .0515
1.9408 .0830 .0793 .0753 .0711 .0668 .0623 .0579 .0535 .0492
2.5497 .0757 .0719 .0678 .0636 .0593 .0551 .0509 .0468
3.2738 .0682 .0643 .0602 .0562 .0521 .0481 .0442
4.1554 .0605 .0567 .0528 .0490 .0452 .0415
5.2476 .0531 .0494 .0458 .0422 .0388

6.6163 .0460 .0426 .0393 .0360

8.3423 .0394 .0363 .0333

10.5224 .0334 .0306

13.2691 .0280

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis­
tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 

direction), the true relationship should be interpreted as being negative and the sign of all calculated r 's  in the body 
of the table should be negative also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­
posite directions), the true relationship should be interpreted as being positive and the sign of all calculated r 's  in 

the body of the table should be positive also.



TABLE 11

Effect of Degree of Skewness on Calculated r when the Configuration of the Marginal Distribution

Produces the Least Curtailment of Calculated r for an Actual r of +.10

Skewness on Y
Skewness

on X
.0000 .4756 .9339 1.4123 1.9408 2.5497 3.2738 4.1554 5.2476 6.6163 8.3423 10.5224 13.2691

.0000 . 1000 .0994 .0976 .0951 .0919 .0882 .0840 .0796 .0750 .0703 .065S .0607 .0560

.4756 .0988 .0972 .0948 .0917 .0881 .0841 .0797 .0752 .0705 .0657 .0610 .0563

.9339 .0958 .0935 .0905 .0870 .0831 .0789 .0745 .0699 .0652 .0606 .0560

1.4123 .0913 .0885 .0852 .0815 .0774 .0731 .0686 .0641 .0596 .0551

1.9408 .0859 .0827 .0792 .0753 .0711 .0669 .0625 .0581 .0538

2.5497 .0797 .0764 .0727 .0687 .0647 .0605 .0563 .0521

3.2738 .0732 .0697 .0660 .0621 .0581 .0541 .0502

4.1554 .0664 .0629 .0593 .0555 .0517 .0480

5.2476 .0596 .0562 .0527 .0491 .0456

6.6163 .0530 .0497 .0464 .0431

8.3423 .0466 .0435 .0405

10.5224 .0407 .0378

13.2691 .0352

Note. This table can be interpreted in two ways, depending on the signs of the skewness for the X and Y marginal dis­
tributions. If both the X and Y marginal skewnesses have either positive or negative signs (both are skewed in the same 

direction), the true relationship should be interpreted as being positive and the sign of all calculated r 's  in the body 
of the table should be positive also. If the X and Y marginal skewnesses have opposite signs (X and Y are skewed in op­
posite directions), the true relationship should be interpreted as being negative and the sign of all calculated r/s in 
the body of the table should be negative also.
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Case Two
Tables 2 through 1 1  also present values of observed r for different skew­

nesses of X and Y when the signs of the skewness for X and Y are different. 
The difference in the interpretation of Tables 2  through 1 1  for Case One 
and Case Two is only a matter of sign. A note at the bottom of each table 
explains the proper interpretation.

Examination of Tables 2 through 1 1  shows that observed r is most re­
duced from its original value by the higher absolute values of skewness. 
Also, the reduction in observed r is greater for the positive values of orig­
inal r than for the negative values.
Graphic Presentation

Figures 1 through 5 present a summary of the information in Tables 2 
through 11. Each figure represents a combination of twro tables. The figures 
show families of curves of observed r’s for a particular original r plotted 
against skewness of Y. Various levels of the skewness of X define each mem­
ber of the family. Similar to the tables, the figures have two interpretations 
which differ only by sign. If the figures are interpreted as is, they represent 
positive true relationships. If all signs are reversed, the figures represent 
negative true relationships.

It is important to note that each figure is a combination of both Case One 
and Case Two for a particular population value of r. Case One consists of 
positive values of skewness for both X and Y. Case Two consists of negative 
values of skewness for Y, with positive values of skewness for X. Thus Case 
One and Case Two form families of continuous curves for constant values 
of skewness of X, since curves in both cases for a particular value of skew­
ness of X have a common point at zero skewness for Y.

Though the curves are not shown in the figures, Case One would also 
consist of negative values of skewness for both X and Y, and Case Two 
would consist of positive values of skewness for Y, with negative skewness 
for X. These configurations w'ould also form families of continuous curves 
for constant values of skewness of X, joining at zero value of skewness for 
Y. These families of curves were omitted because they are mirror images 
of the families of curves show’n. In order to interpret the figures according 
to the configurations not shown, the reader need only establish signs for 
positive or negative relations as necessary, and then change the signs for 
all values of skewness.

The figures indicate the effect that distribution shape, as measured by 
skewness, has on the Pearson product moment correlation coefficient. A 
significant feature of the figures is their general similarity. Each figure 
shows that w’hen both marginal distributions are normal, observed r is 
equal to the original r. Each curve for constant skewness of X has a maxi-

2 7 7
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Figure 3 .— Family of curves showing observed r vs . skewness of Y  for various values of skewness
on X and an original r of + .S 0 .
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Effects of Non-Normal Distribution

mum point for a value of skewness on Y nearly equal to the value of skew­
ness of X for the curve.

The results of this study are summarized in terms of the two configura­
tions of marginal distribution shape and sign of the true relationship.
I. Case One — both marginal distributions skewed either positively or nega­
tively but in the same direction.

A. Positive original relationship. The departure of the obtained correla­
tion from the original value is small for small magnitudes of skewness for 
both X and Y but becomes fairly large for larger values of marginal skew­
ness for either or both X and Y. However, when one marginal distribution 
is highly skewed, the departure of the obtained correlation from the orig­
inal value is large and nearly uniform regardless of the shape of the other 
marginal. When both marginals are skewed, the least bias occurs when 
both marginal distributions are skewed equally.

B. Negative original relationships. The departure of the obtained corre­
lation from the original value is small for small magnitudes of marginal 
skewness for both X  and Y but becomes increasingly extreme for larger 
values of marginal skewness for either or both X and Y.
II. Case Two — both marginal distributions are skewed either positively or

negatively but in opposite directions.
A. Positive original relationship. The departure of the obtained correla­

tion from the original value is small for small magnitudes of marginal skew­
ness for both X and Y but becomes increasingly extreme for larger values 
of marginal skewness for either or both X and Y.

B. Negative original relationship. The departure of the obtained corre­
lation from the true value is small for small magnitudes of marginal skew­
ness for both X and Y but becomes fairly large for larger values of marginal 
skewness for either or both X  and Y. However, when one marginal distri­
bution is highly skewed, the departure of the obtained correlation from the 
original value is large and nearly uniform regardless of the shape of the 
other marginal distribution. W7hen both marginals are skewed, the least 
bias occurs when both marginal distributions are skewed equally.

DISCUSSION

The concept of correlation as a descriptive index represents an attempt 
to quantify relationship between variables. Mathematically the implemen­
tation of this concept involves fitting some function to a joint distribution 
of values from the variables. The “goodness” of the fit is taken as indication 
of the relationship existing between the variables, and is quantified as a 
correlation coefficient. The magnitude of such a correlation coefficient is 
inversely related to the magnitude of the error which results from fitting

2 8 3
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the mathematical function to the joint distribution. A particular applica­
tion of the concept of correlation representing a specified function and a 
specific number of variables is a correlational model.

In such a procedure for quantification of relationships between variables, 
mathematical and logical constraints are implicit in the derivation and in­
terpretation of a correlation coefficient. These constraints have major im­
plications for application of correlational technique. When the nature of 
the data does not correspond to the constraints of a particular correlational 
model, the value of the correlation coefficient will probaly be distorted and 
incorrect conclusions about the relationship between the variables can re­
sult. A lack of correspondence between the data and the model can occur 
in two general ways: ( 1 ) the mathematical function fit to the data may be 
inapprpriate, and (2) although the mathematical function fit to the data 
is appropriate, the data may not be distributed as assumed in the model. 
For some applications the appropriateness of a model can be relatively 
evident. One such situation occurs for the descriptive use of the Pearson 
product moment correlational model.

When the correlational model is of the Pearson product moment type, 
the joint distribution represents values from only two variables, and the 
function fit to the bivariate distribution is linear. If the distribution of the 
data is bivariate normal, the Pearson product moment correlation coeffi­
cient represents a “good” description of the relationship between the vari­
ables. When the data are not distributed bivariately normal, the Pearson 
product moment correlation technique probably represents a biased or 
“less good” description of the association between the variables. This study 
represents an attempt to quantify how much “less good” the Pearson pro­
duct moment correlation coefficient is as a measure of relationship when 
the two variables are not bivariate normally distributed.

Non-normality in bivariate distributions which previous experience with 
similar variables would lead an investigator to expect to be distributed 
normally is probably indicative that some quantification error has disrupted 
the process by which values of one or both the variables were obtained. 
Carroll (1961) suggested that errors of quantification can be classified as 
( 1)  errors of scaling (i.e.. censoring and/or use of a non-equal interval 
metric), (2) errors of scale-dependent selection (i.e., restriction in range) 
and (3) errors of measurement. The particular error of scaling, involving 
use of a non-equal interval metric, has important implications for inter­
preting this study.

If the amount of inequality of the intervals of a metric is uniform across 
the possible range of values (i.e., the amount of the inequality increases or 
decreases by a constant amount for succeeding values), it is possible to 
conceive of the consequences of the use of such a scale. However, if the
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amount of inequality of the intervals is not uniform such a general concep­
tion becomes impossible. The use of such a scale which has uniform un­
equal intervals can cause the scaling of the obtained values to be a non­
linear transformation of the true scale, and bivariate use of such disrupted 
scales can cause the apparent regression lines for two variables to be non­
linear when the true regression lines for the variables are linear. Since the 
type of transformation used in this study caused a uniform rescaling of the 
variables which destroyed the equality' of the intervals, a strict interpreta­
tion should only permit this study to be viewed as an investigation of cor­
relational bias which will be found in bivariate distributions which are 
non-normal because the scales of measurement are characterized by uni­
formly unequal intervals.

However, since it can be shown that correlations in normal bivariate dis­
tributions can “best” be represented by linear functions, it is reasonable to 
assume that correlations in most non-normal bivariate distributions can 
“best” be described by non-linear functions. And since the type of transfor­
mation used in the study can be seen to cause the true (actual) regression 
lines to be non-linear, an alternative interpretation of the study is possible. 
Thus a less strict interpretation could allow this study to be viewed as an 
investigation of the amount of bias which will be found for correlations in 
bivariate distributions which are non-normal because the true relationship 
between the variables is non-linear for a correlational model which as­
sumes a linear relationship. However, only the effects of lack of bivariate 
normality due to the true relationship being non-linear as a result of a 
power transformation have been investigated.

The results of this study show that the amount of bias, the magnitude of 
the true relationship, and the degree and configuration of marginal skew­
ness are related in a complex manner. However, the bias appears to always 
represent an underestimation of the value of the true relationship. In gen­
eral the bias is least when both marginal distributions are nearly normal 
and greatest when both marginal distributions are highly skewed. The 
magnitude of the bias depends upon the configuration of the marginal dis­
tribution shapes and sign of the true relationship. When the true relation­
ship is positive and the marginal distributions are skewed, the magnitude 
of the bias is much greater when the marginal distributions are skewed in 
opposite directions than when they are skewed in the same direction. When 
the true relationship is negative and the marginal distributions are skewed, 
the magnitude of the bias is much greater when the marginal distributions 
are skewed in the same direction than when they are skewed in opposite 
directions.

The results of this study should be of interest to investigators who use 
factor analysis or test construction techniques based on correlations be-
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tween scaled scores or item responses when the item responses are con­
sidered to be estimates of a value on a continuum. In these cases it should 
be assumed (Binder, 1959) that the distributions of scores or item responses 
are normally distributed for the populations being investigated. This as­
sumption would appear to be untenable, however, when factors are oper­
ating which cause the distributions of scores or item responses to be skewed. 
In such cases the results of the factor or item analysis which are obtained 
would be distorted due to the dependence of these techniques on undis­
torted correlation coefficients.

The results of this study could be useful for an investigator who wishes 
to estimate the amount of bias induced by lack of bivariate normality for 
the population he should expect, when he uses a Pearson product moment 
correlation coefficient as a measure of relationship. To estimate this bias an 
investigator need only enter the appropriate tables or figures with some 
knowledge of the suspected population correlation and the values of skew­
ness for both his variables and obtain the curtailed correlation by interpo­
lation. This curtailed correlation is the value he would expect to obtain if 
he computed the correlation for the entire population or the average of the 
values he would obtain if he secured correlations from multiple samples of 
fixed size from this population. In addition, if the investigator were to con­
clude that skewness were a problem and he desired to transform his data, 
Table 1  could provide an estimate of an exponential value for a power 
transformation.

To summarize, it has long been recognized that the Pearson product 
moment correlation technique leads to biased correlation coefficients when 
the data and the assumptions of the model used do not correspond. The 
magnitude of this bias for the descriptive correlational model has been the 
concern of this study when the variables do not meet the assumptions of 
the model because of a non-equal interval scaling metric or alternatively 
because the true relationship between the variables was non-linear. Re­
sults of the study indicate that in all cases this bias represents an under­
estimation of the true correlation. The magnitude of the bias is relatively 
small for minor deviations from bivariate normality' but becomes quite 
large for extreme deviations from bivariate normality. The results of this 
study should be useful for investigators who utilize descriptive correla­
tions with variables which are univariately skewed (because of difficulty, 
preference or other factors) to estimate the magnitude of the bias they 
should expect when they investigate the relationship between such vari­
ables. However, this study was conducted for a simulated population, so 
investigators who use correlations as descriptive statistics in research with 
skewed variables utilizing samples must consider the difficulties of esti­
mating correlations for populations as well as bias due to the non-normali-
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ty of the bivariate distribution.
The author urges that the following delimitations be entertained by

readers of this papei:
1. The procedure for the power transformation did not allow for skew­
ness and kurtosis to be controlled independently. Thus some of the dis­
covered bias could be due to the effects of marginal kurtosis or to the 
joint effect of the marginal skewness and kurtosis rather than to marginal 
skewness alone.
2. Perhaps the use of marginal distribution shape as an indicator of lack 
of bivariate normality obscures other important effects which might be 
evident if a bivariate measurement of lack of bivariate normality had 
been used.
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NOTES

1 . The contributions of the late Harvey Dingman, who supervised this study in con­
nection with the author's M.A. thesis, are gratefully acknowledged. T h e  author is now 
an Assistant Professor in the Department of Educational Psychology and Guidance at the 
University of Texas at E l Paso.

2. The computer utilized was a CDC 6600 located at The University of Texas at Aus­
tin. The computer programs for this study can be found in Calkins ( 1969).
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